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Humans often cooperate with strangers, despite the costs involved. A
long tradition of theoretical modeling has sought ultimate evolution-
ary explanations for this seemingly altruistic behavior. More recently,
an entirely separate body of experimental work has begun to inves-
tigate cooperation’s proximate cognitive underpinnings using a dual-
process framework: Is deliberative self-control necessary to reign in
selfish impulses, or does self-interested deliberation restrain an intu-
itive desire to cooperate? Integrating these ultimate and proximate
approaches, we introduce dual-process cognition into a formal game-
theoretic model of the evolution of cooperation. Agents play pris-
oner's dilemma games, some of which are one-shot and others of
which involve reciprocity. They can either respond by using a gener-
alized intuition, which is not sensitive to whether the game is one-
shot or reciprocal, or pay a (stochastically varying) cost to deliberate
and tailor their strategy to the type of game they are facing. We find
that, depending on the level of reciprocity and assortment, selection
favors one of two strategies: intuitive defectors who never deliber-
ate, or dual-process agents who intuitively cooperate but sometimes
use deliberation to defect in one-shot games. Critically, selection
never favors agents who use deliberation to override selfish impulses:
Deliberation only serves to undermine cooperation with strangers.
Thus, by introducing a formal theoretical framework for exploring
cooperation through a dual-process lens, we provide a clear answer
regarding the role of deliberation in cooperation based on evolu-
tionary modeling, help to organize a growing body of sometimes-
conflicting empirical results, and shed light on the nature of human
cognition and social decision making.

dual process | cooperation | evolutionary game theory |
prisoner’s dilemma | heuristics

ooperation, where people pay costs to benefit others, is a

defining feature of human social interaction. However, our
willingness to cooperate is puzzling because of the individual
costs that cooperation entails. Explaining how the “selfish”
process of evolution could have given rise to seemingly altruistic
cooperation has been a major focus of research across the nat-
ural and social sciences for decades. Using the tools of evolu-
tionary game theory, great progress has been made in identifying
mechanisms by which selection can favor cooperative strategies,
providing ultimate explanations for the widespread cooperation
observed in human societies (1).

In recent years, the proximate cognitive mechanisms underpin-
ning human cooperation have also begun to receive widespread
attention. For example, a wide range of experimental evidence
suggests that emotion and intuition play a key role in motivating
cooperation (2-5). The dual-process perspective on decision making
(6-8) offers a powerful framework for integrating these observa-
tions. In the dual-process framework, decisions are conceptualized
as arising from competition between two types of cognitive pro-
cesses: (i) automatic, intuitive processes that are relatively effortless
but inflexible; and (ii) controlled, deliberative processes that are
relatively effortful but flexible. In many situations, intuitive and
deliberative processes can favor different decisions, leading to inner
conflict: Rather than being of a single mind, people are torn be-
tween competing desires.
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Despite the widespread attention that dual-process theories have
received in the psychological and economic sciences (including
incorporation into formal decision making models; refs. 9-11); the
existence of related discussion in the theoretical biology literature
regarding error management (12-14), tradeoffs between fixed and
flexible behaviors (15-18), and cultural evolution and norm in-
ternalization (2, 19, 20); and a long interdisciplinary tradition of
arguments suggesting that strategies developed in repeated inter-
actions spill over to influence behavior in one-shot anonymous
settings (21-25), the dual-process framework has been almost en-
tirely absent from formal models of the evolution of cooperation.
Traditional evolutionary game theory models of cooperation focus
on behavior, rather than the cognition that underlies behavior.
Therefore, these models do not shed light on when selection may
favor the use of intuition versus deliberation, or which specific
intuitive and deliberative responses will be favored by selection.

In this paper, we build a bridge between ultimate and proximate
levels of analysis to address these questions, introducing an evo-
lutionary game-theoretic model of cooperation that allows for
dual-process agents. These agents interact in a varied social en-
vironment, where interactions differ in the extent to which current
actions carry future consequences. To capture the tradeoff be-
tween flexibility and effort that is central to many dual-process
theories, we allow our agents to either (i) use an intuitive response
that is not sensitive to the type of interaction currently faced; or
(if) pay a cost to deliberate, tailoring their action to the details of
the current interaction.

Significance

The role of intuition versus deliberation in human cooperation
has received widespread attention from experimentalists across
the behavioral sciences in recent years. Yet a formal theoretical
framework for addressing this question has been absent. Here,
we introduce an evolutionary game-theoretic model of dual-
process agents playing prisoner's dilemma games. We find that,
across many types of environments, evolution only ever favors
agents who (i) always intuitively defect, or (ii) are intuitively pre-
disposed to cooperate but who, when deliberating, switch to de-
fection if it is in their self-interest to do so. Our model offers a clear
explanation for why we should expect deliberation to promote
selfishness rather than cooperation and unifies apparently con-
tradictory empirical results regarding intuition and cooperation.
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We then use this framework to explore the consequences of
reciprocity and assortment (26, 27), two of the most widely studied
mechanisms for the evolution of cooperation. We ask when (and
to what extent) agents evolve to pay the cost of deliberation; when
evolution favors intuitive responses that are selfish versus cooper-
ative; and whether deliberation serves to increase or decrease social
welfare. In doing so, we provide a formal theoretical framework to
guide the emerging body of empirical work exploring proso-
ciality from a dual-process perspective, and provide insight into the
cognitive underpinnings of human cooperation.

Model

There are two key dimensions on which our model differs from
typical models of the evolution of cooperation: (i) in each genera-
tion, agents play more than one type of game; and (i) agents need
not have a single fixed strategy, but can engage in costly deliberation
to tailor their response to the type of game they are facing.

With respect to multiple game types, our agents face both one-
shot anonymous prisoner’s dilemma (PD) games (which occur
with probability 1-p) and PDs where reciprocal consequences
exist (which occur with probability p). In the one-shot PDs,
agents can cooperate by paying a cost ¢ to give a benefit b to their
partner, or defect by doing nothing. In the games with reciprocal
consequences, we capture the core of reciprocity [be it via re-
peated interactions, reputation effects, or sanctions (1)] by
modifying the off-diagonal elements of the PD payoff structure:
When exploitation occurs, such that one player defects while the
other cooperates, the benefit to the defector is reduced (due to,
e.g., lost future cooperation, damaged reputation, or material
punishment), as is the cost to the cooperator (due to, e.g.,
switching to defection, improved reputation, or material rewards).
As a result, the social dilemma of the PD is transformed into a
coordination game: It becomes payoff-maximizing to cooperate if
one’s partner also cooperates. For simplicity, we focus on the lim-
iting case where when one player cooperates and the other defects,
both receive zero payoffs. Because this simplified payoff structure is
analogous to the average payoff per round of an infinitely repeated
PD between “tit-for-tat” and “always defect,” for expositional pur-
poses, we refer to games with reciprocal consequences as “repeated
games.” Critically, however, our results do not rely on this simpli-
fying assumption, or on the use of repeated games more generally
(mitigating potential concerns about alternative repeated game
strategy sets; ref. 28). Rather, they hold whenever agents face any
of a broad class of cooperative coordination games with proba-
bility p; see SI Appendix, Section 6 for details. Similarly, the social
dilemma that occurs with probability 1—p need not be a one-shot
PD—equivalent results would be obtained by using any game where
cooperation always earns less than noncooperation.

We also consider the other main force that has been argued to
underlie the evolution of human cooperation: assortment (29). An
agent plays against another agent having the same strategy as
herself with probability a and plays with an agent selected at ran-
dom from the population with probability 1—a. Thus, a captures
the extent to which agents of similar types are more likely than
chance to interact. This assortment could arise from relatedness,
spatial or networked interactions, or group selection (1).

With respect to multiple strategies within a single agent, our
model allows agents to use two forms of decision making: intuition
or deliberation (see Fig. 1 for a visual depiction of an agent’s de-
cision process; and SI Appendix, Section 1 for further details).
Among the various dimensions upon which these modes of cogni-
tive processing differ (6), we focus on the fact that intuitive re-
sponses are quick and relatively effortless (and thus less costly), but
also less sensitive to situational and strategic details than de-
liberative responses. For simplicity, we focus on the limiting case
where intuition is totally inflexible and deliberation is perfectly
flexible/accurate. When agents decide intuitively, they cooperate
with some fixed probability S;, regardless of whether the game is
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Fig. 1. Agents play PD games that are either one-shot or involve reciprocity,
and either use a generalized intuitive strategy that does not depend on game
type, or engage in costly deliberation and tailor their strategy based on game
type. The strategy space for the agents in our model, which consists of four
variables T, S, S;, and S,, is visualized here along with the sequence of events
within each interaction between two agents (both agents face the same de-
cision, so for illustrative simplicity only one agent'’s decision process is shown).
First, the agent’s cost of deliberation for this interaction d* is sampled uni-
formly from the interval [0, d]. The agent’s deliberation threshold T then de-
termines which mode of cognitive processing is applied. If d* > T, it is too
costly to deliberate in this interaction and she makes her cooperation decision
based on her generalized intuitive response S;; intuition cannot differentiate
between game types, and so regardless of whether the game is one-shot
(probability 1—p) or repeated (probability p), she plays the cooperative strat-
egy with probability S;. If d* < T, however, deliberation is not too costly, so she
pays the cost d* and uses deliberation to tailor her play to the type of game
she is facing: If the game is one-shot, she plays the cooperative strategy with
probability S;, and if the game is repeated, she plays the cooperative strategy
with probability S,. For example, when deliberating, an agent could decide to
defect in a one-shot game (S; = 0) but cooperate in a repeated game (S, = 1).
In contrast, when using intuition, this agent must either cooperate in both
contexts (S; = 1) or defect in both contexts (S; = 0).

one-shot or repeated. Deliberating, conversely, allows agents to
potentially override this intuitive response and tailor their strategy
to the type of game they are facing. When deliberating, agents
cooperate with probability S; if the game they are facing is one-shot,
and cooperate with probability S, if it is repeated.

The flexibility of deliberation, however, comes at a cost (30, 31).
This cost can take several forms. First, deliberation is typically
slower than intuition, and this greater time investment can be costly.
For example, sometimes decisions must be made quickly lest you
miss out on the opportunity to act. Second, deliberation is more
cognitively demanding than intuition: Reasoning your way to an
optimal solution takes cognitive effort. Furthermore, because in-
tuitions are typically low-level cognitive processes that are triggered
automatically and reflexively (7, 8), cognitive resources may also be
required to inhibit intuitive responses when deliberation reveals
that they are suboptimal. These cognitive demands associated with
deliberation can impose fitness costs by reducing the agent’s ability
to devote cognitive resources to other important tasks unrelated to
the cooperation decision. The fitness costs associated with this need
to redirect cognitive resources are particularly large when agents
are under cognitive load or are fatigued.

Thus, deliberation is costly, but the size of that cost varies from
decision to decision (between 0 and some maximum value d).
For simplicity, in each interaction, we independently sample a
cost of deliberation d* for each agent from a uniform distribu-
tion over [0, d].

In addition to evolving different intuitive and deliberative re-
sponses, we allow natural selection to act on the extent to which
agents rely on intuition versus deliberation. Specifically, each
agent’s strategy specifies a deliberation cost threshold 7, such
that they deliberate in interactions where the deliberation cost is
sufficiently small, d* < T, but act intuitively when deliberation is
sufficiently costly, d* > T. Thus, in any given interaction, an
agent with threshold T deliberates with probability 7/d and uses
intuition with probability 1-77/d. The higher an agent’s value of
T, the more that agent tends to deliberate.
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In sum, an agent’s strategy is defined by four variables: her
(i) probability of intuitively cooperating S, (ii) probability of
cooperating when she deliberates and faces a one-shot game
S, (iif) probability of cooperating when she deliberates and faces a
repeated game S,, and (iv) maximum acceptable cost of deliber-
ation 7. For example, consider an agent with S; =1, 5, =1,5; =0,
and T = 0.5 engaging in a one-shot game. If she received a ran-
domly sampled deliberation cost of d* = 0.7, she would play her
intuitive choice S;, and cooperate. Alternatively, if she received a
lower randomly sampled deliberation cost of d* = 0.3, she would
play her deliberative strategy for one-shot games S; and defect
(and incur the deliberation cost of 0.3).

Within this framework, we consider the stochastic evolutionary
dynamics of a population of finite size N evolving via the Moran
process. This dynamic can describe either genetic evolution where
fitter agents produce more offspring, or social learning where people
preferentially copy the strategies of successful others. In each gen-
eration, an individual is randomly picked to change its strategy
(“die”), and another individual is picked proportional to fitness to be
imitated (“reproduce”). (Fitness is defined as €"”, where w is the
“intensity of selection” and = is the agent’s expected payoff from
interacting with the other agents in the population.) With probability
u, experimentation (“mutation”) occurs, and instead a random
strategy is chosen. For our main analyses, we perform exact nu-
merical calculations in the limit of low mutation using a discretized
strategy set (SI Appendix, Section 4); we obtain equivalent results
by using agent-based simulations with higher mutation and
a continuous strategy space (S Appendix, Section 5 and Fig. S3).
Code implementing the model in MATLAB is available at
https://gist.github.com/adambear91/c9b3c02a7b9240e288cc.

Results

What strategies, then, does evolution favor in our model? We
begin by varying the extent of reciprocity p in the absence of as-
sortment (a = 0) (Fig. 24). When most interactions are one-shot
(p is small), selection favors agents who intuitively defect, S; = 0,
and who rarely deliberate, 7~0. (Because the deliberative choices
of these agents, S, and S;, are seldom used, their values have little
effect on fitness, and drift pulls their average values toward neu-
trality, 0.5; nonetheless, deliberation always favors cooperation
over defection in repeated games, S, > 0.5, and defection over
cooperation in one-shot games, S; < 0.5.)

Once p increases beyond some critical threshold, we observe
the simultaneous emergence of both (i) intuitive cooperation, S;
= 1; and (i) the use of deliberation, T >> 0, to implement the
“rational” behaviors of cooperating in repeated games, S, = 1,
but defecting in one-shot games, S; = 0. Thus, when faced with a
repeated game, these agents’ intuition and deliberation agree
upon cooperating. When faced with a one-shot game, however,
the agents experience internal conflict: Intuition prescribes co-
operation, but deliberation overrules this cooperative impulse in
favor of defection.

As p increases further, agents’ intuitive and deliberative responses
do not change, but their propensity to engage in deliberation
steadily declines. Once p becomes sufficiently close to 1, agents
are again relying almost entirely on intuition—albeit, now, a
cooperative intuition (unlike when p was small).

What explains this pattern of results? A Nash equilibrium anal-
ysis provides clear insight (see SI Appendix, Section 2 for technical
details). There are at most two equilibria (Fig. 2B). The intuitive
defector (ID) strategy profile, which is always an equilibrium, has
defection as its intuitive response, S; = 0, and never deliberates, T =
0. The second possibility, which is only an equilibrium when re-
peated games are sufficiently likely (p > ¢/b), is the dual-process
cooperator (DC) strategy profile. DC players intuitively cooperate,
S; = 1, and deliberate when the cost of deliberation is not greater
than T = ¢(1-p). On the occasions that DC players deliberate, they
cooperate if the game is repeated, S, = 1, and defect if the game is
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Fig. 2. Reciprocity leads evolution to favor dual-process agents who intuitively
cooperate but use deliberation to defect in one-shot games. (4) Shown are
the average values of each strategy variable in the steady-state distribution of
the evolutionary process, as a function of the probability of repeated games p.
When most interactions are one-shot (p is small), agents intuitively defect (S; = 0)
and rarely deliberate (7~0) (as a result, the deliberative cooperation strategies
for one-shot games S; and repeated games S, are rarely used, and so their values
are dominated by neutral drift and sit near 0.5). Conversely, when the proba-
bility of repeated games (i.e., the extent of reciprocity) is sufficiently high (p >
0.3 for these parameters), agents evolve to be intuitively cooperative (S; = 1) and
to pay substantial costs to deliberate (T >> 0); and when these agents de-
liberate, they cooperate in repeated games (S, = 1) and defect in one-shot
games (S; = 0). As the probability of repeated games p increases beyond this
point, these intuitive and deliberative responses do not change, but agents
become less willing to deliberate (T decreases). Evolutionary calculations use N =
50,b=4,c=1,d=1,w=6, and a = 0; see S/ Appendix, Fig. S2 for calculations
using other parameter values. (B) To better understand the dynamics in A, we
perform Nash equilibrium calculations. There are two possible equilibria, which
are described here: (i) the ID strategy, which never deliberates (T = 0) and al-
ways intuitively defects (S; = 0; S; and S, are undefined because deliberation is
never used); and (ii) the DC strategy, which intuitively cooperates (S; = 1) and is
willing to pay a maximum cost of T = c(1-p) to deliberate, in which case it
cooperates in repeated games (S, = 1) and switches to defection in one-shot
games (S; = 0). (C) Evolutionary calculations using only these two strategies
successfully reproduce the results of the full strategy space in A. Thus, these two
strategies are sufficient to characterize the dynamics of the system: We find that
the population shifts from entirely ID to entirely DC once p becomes large
enough for DC to risk-dominate ID (see S/ Appendix for calculation details). (D)
As a result, cooperation in repeated games goes to ceiling as soon as p passes
this threshold, whereas cooperation in one-shot games slowly increases with p.
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one-shot, S; = 0. In other words, DC players use deliberation to
override their cooperative intuitions when they find themselves in a
one-shot game, and instead defect.

Together, these two Nash equilibria reproduce the pattern ob-
served in the evolutionary dynamics (Fig. 2C). The transition from
ID to DC occurs precisely at the point where DC risk-dominates
ID (i.e., where DC earns more than ID in a population where both
strategies are equally likely, which is known to predict evolutionary
success; see SI Appendix, Section 3 for details), after which point
mean T = ¢(1-p) (declining linearly in p). Furthermore, after this
point, increasing the probability of games being repeated p has no
effect on cooperation in repeated games (which is at ceiling), but
instead increases cooperation in one-shot games (Fig. 2D): Across
a wide range of parameters, cooperation in repeated games is
high, and cooperation in one-shot games is lower but substantially
greater than zero [as is typical of human behavior (1)].

Why is T = ¢(1-p) the maximum cost for which DC will de-
liberate? Deliberation allows DC to avoid cooperating (and, thus,
avoid incurring a cost ¢) in the fraction (1-p) of interactions that are
one-shot; in the fraction p of interactions that are repeated, there is
no benefit to deliberating, because DC’s intuitive and deliberative
responses agree on cooperating. Therefore, ¢(1—p) is DC’s expected
payoff gain from deliberating, and so deliberation is disadvanta-
geous when it is more costly than c(1—p). This condition empha-
sizes the fact that deliberation’s only function for DC agents is to
restrain the impulse to cooperate in one-shot games. Intuition,
conversely, functions as a “repeated game” social heuristic (24,
25), prescribing the cooperative strategy that is typically advanta-
geous (given the sufficiently high prevalence of repeated games).

Critically, we do not observe an equilibrium that intuitively de-
fects but uses deliberation to cooperate in repeated games. This
strategy is not an equilibrium because of a coordination problem:
It is only beneficial to override a defecting intuition to cooperate
in a repeated game when your partner also plays a cooperative
strategy. Thus, ID’s expected payoff from deliberating when
playing a repeated game with an ID partner is discounted by the
extent to which their partner fails to deliberate (and so the partner
defects, even though the game is repeated). As a result, IDs
maximize their payoff by deliberating less than their partners,
leading to an unraveling of deliberation: Any nonzero deliberation
threshold is not Nash, because there is an incentive to deviate by
deliberating less than your partner. (This is not true for the in-
tuitively cooperative strategy DC deliberating in one-shot games,
because in one-shot games it is always beneficial to switch to de-
fection, no matter what the other agent does.)

Finally, we investigate the effect of assortment in our model.
Nash equilibrium analysis again shows that ID and DC are the
only equilibria, with DC’s deliberation threshold now being T =
(c—ba)(1-p). Increasing a acts in a similar way to increasing p,
allowing DC to be favored over ID and, subsequently, reducing
T (Fig. 34). Consistent with this analysis, evolutionary calculations
show an interaction between a and p. When repeated games are rare
(small p), increasing a allows intuitive cooperation to succeed and
initially increases 7" (as DC begins to outperform ID); as a increases
further, however, T decreases (Fig. 3B). When repeated games are
common (large p), conversely, DC is dominant even without as-
sortment; therefore, increasing a always decreases T (Fig. 3C). These
analyses show that our results are robust to assumptions about the
evolutionary history of humans: Regardless of whether most inter-
actions involved reciprocity with little assortment, or most interac-
tions were one-shot but assorted, selection favors the same intuitively
cooperative dual-process strategy (and never a strategy that uses
deliberation to cooperate by overruling intuitive defection).

Discussion

By integrating dual-process cognition into a game-theoretic model
of the evolution of cooperation based on reciprocity and assortment,
we provide a formal theoretical framework for considering the
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Fig. 3. Assortment also favors the evolution of dual process cooperators. (A)
Nash equilibrium calculations with assortment (a > 0) again find that ID and
DC are the only possible equilibria. The risk-dominant strategy is shown as a
function of the probability of repeated games p and the level of assortment a
(risk-dominance indicates which strategy will be favored by selection; see S/
Appendix, Fig. S1 for corresponding evolutionary calculations). DC is favored
so long as either p or a are sufficiently large. Thus, regardless of whether
evolution occurs in a world where reciprocity is powerful and assortment is
weak, or where reciprocity is weak and assortment is strong, selection favors
intuitive cooperation combined with deliberative defection in one-shot
games. Also shown are isoclines for T within the region where DC is favored.
Here, increasing either a or p decreases T. Thus, we find an interaction with
reciprocity when considering how assortment affects cognitive style: when p is
low, assortment initially increases deliberation, but when p is high, assortment
monotonically decreases deliberation. This interaction is visualized by showing
the average values of each strategy variable in the steady-state distribution of
the evolutionary process as a function of assortment a, for p=0.2 (B) and p =
0.6 (C). Evolutionary calculations use N=50, b=4,c=1,d=1,and w=6.

question of whether prosociality is intuitive or whether it re-
quires self-control. We find that evolution never favors strategies
for which deliberation increases cooperation. Instead, when de-
liberation occurs, it always works to undermine cooperation in one-
shot interactions. Intuition, conversely, acts as a social heuristic (24,
25), implementing the behavior that is typically advantageous
(cooperation, unless p and a are both sufficiently small, because the
cost of missing out on reciprocal cooperation outweighs the cost of
needlessly cooperating in one-shot games (14). Thus, our model helps
to explain why people cooperate even in one-shot anonymous set-
tings, but less frequently than they do in repeated interactions. Fur-
thermore, we offer an explanation for why cooperation in such
situations is typically “conditional” rather than “unconditional” (32)
(i.e., why people will cooperate in one-shot games, but only if they
expect their partner to also cooperate): when one-shot cooperation
evolves in our model, it occurs via an intuitive response that treats
social dilemmas as if they were coordination games.

Our model also makes numerous clear, testable predictions
about human cognition. First, in one-shot anonymous interactions,
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promoting intuition (increasing the cost of deliberation d*)
should, on average, increase cooperation relative to promoting
deliberation (reducing d*). This prediction holds even in labora-
tory experiments where participants are explicitly told that the
game they are playing is one-shot, for at least two reasons. First,
deliberation is required to translate this explicit knowledge about
game length into a strategic understanding that cooperative intu-
itions should be overridden (many participants mistakenly believe
that it is in their self-interest to cooperate even when they are told
the game is one-shot, as shown for example in refs. 33 and 34).
Second, further cognitive effort may be required to inhibit the
intuitive response because it is triggered automatically. In line with
this prediction, data from numerous research groups show that
experimentally inducing participants to decide more intuitively
using time pressure (4, 24, 33), cognitive load (35-37), conceptual
inductions (3, 4, 38), or variation in payment delays (11, 39) can
increase prosociality in one-shot economic games.

Furthermore, our model predicts substantial heterogeneity
across individuals in this effect. People who developed their
strategies in social settings with little future consequence for bad
behavior (small p) and low levels of assortment (small a) are
predicted to intuitively defect (S; = 0), and to engage in little
deliberation, regardless of the cost (7' = 0). Thus, experimentally
manipulating the cost of deliberation should not affect these
participants’ cooperation. Consistent with this prediction, time
constraint manipulations were found to have little effect on par-
ticipants with untrustworthy daily-life interaction partners (34) or
participants from a country with low levels of interpersonal trust
and cooperation (40). Furthermore, our model predicts that when
p and/or a becomes sufficiently large, 7" also approaches 0 (albeit
with a cooperative intuition, S; = 1). Therefore, people who de-
veloped their strategies in contexts that were extremely favorable
to cooperation should also be relatively unaffected by cognitive
process manipulations. This prediction may help to explain why
some one-shot game studies find no effect of manipulating in-
tuition (41). Further support for the predicted link between extent
of future consequences and intuitive one-shot cooperation comes
from laboratory evidence for “habits of virtue,” where repeated
game play spills over into subsequent one-shot interactions, but
only among participants who rely on heuristics (25). These various
experience-related results emphasize that our model operates in
the domain of cultural evolution and social learning (1, 19, 20), in
addition to (or instead of) genetic evolution.

Our model also predicts variation in the effect of intuition
versus deliberation across contexts: Whereas deliberating under-
mines cooperation in one-shot games, it is predicted to have no
effect in repeated games. The DC strategy’s cooperative intuition
is supported (and, therefore, unaffected) by deliberation in re-
peated games; and the ID strategy defects under all circumstances,
and so is unaffected by deliberation. Consistent with this pre-
diction, manipulating intuition had little effect on cooperation in a
repeated four-player PD (42) or a modified public goods game
where cooperating was individually payoff-maximizing (34).

Although our model predicts that manipulating the use of intuition
versus deliberation will have the aforementioned effects, it conversely
predicts that there will likely not be a consistent correlation between
one-shot cooperation and an individual’s willingness to deliberate T
(i.e., their “cognitive style”): Highly intuitive (low T') individuals can
either be intuitive defectors or intuitive cooperators. In line with this
prediction, little consistent association has been found between an
individual’s cognitive style and their overall willingness to cooperate
in one-shot games (4, 43, 44). Furthermore, individual differences in
reaction times, which are often interpreted as a proxy for intuitiveness
(although see refs. 45 and 46 for an alternative interpretation based
on decision conflict), have been associated with both increased (4,
47-49) and decreased (50, 51) cooperation. Our model therefore
helps to explain the otherwise-puzzling difference in experimental
results between cognitive process manipulations and reaction time
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correlations. Our model also makes the further prediction, untested
as far as we know, that a consistent correlation between cognitive
style and cooperation should emerge in samples that are restricted to
individuals who developed their strategies under conditions where p
and/or r were sufficiently large.

The model we have presented here is, in the game-theoretic tra-
dition, highly stylized and focused on limiting cases for tractability. In
particular, we assume (i) that agents engage in only two different
types of games, rather than, for example, sampling PD game
lengths (or coordination game payoffs) from a distribution; (if) that
deliberation is perfectly accurate in assessing the type of game
being played, whereas intuition is totally insensitive to game type;
and (iii) that the cost of deliberation is sampled from a uniform
distribution on the interval [0, d], rather than a more realistic
distribution of costs. Future work should extend the framework we
introduce here to explore the effects of relaxing these assumptions
and incorporate other nuances of dual-process cognition that were
not included in this first model. For example, intuitive thinking
might be made observable, such that agents could condition on the
cognitive style of their partners (as in recent work on “cooperation
without looking”; ref. 52). Or, feedback between the population
state and the environment (i.e., the model parameters) could be
incorporated, as has been done in recent models of the evolution of
dual-process agents in the context of intertemporal choice (17, 18).

Future work should also use the framework introduced here to
explore the evolution of cognition in domains beyond cooperation.
For example, our framework could easily be extended to describe
the internalization of a variety of social norms unrelated to co-
operation, such as rituals or taboos. Consider any situation in
which following the norm is individually costly, but becomes
payoff-maximizing when interacting with others who also follow
the norm (e.g., because they would sanction norm violations). Our
model’s logic suggests that selection can favor a strategy that
(¢) intuitively follows the norm, but (ii) uses deliberation to violate
the norm in settings where there is little threat of sanctions (e.g.,
because one’s behavior is unobservable), so long as the overall
probability of being sanctioned and/or the severity of the sanctions
are sufficiently high.

Our framework could also be extended to explain rejections in
the ultimatum game (UG). In this game, Player 1 proposes how a
monetary stake should be divided between herself and Player 2.
Player 2 can then either accept, or reject such that both players
receive nothing. Behavioral experiments suggest that in the one-
shot anonymous UG, intuition supports rejecting unfair offers,
whereas deliberation leads to increased acceptance (53-55) (al-
though neurobiological evidence is somewhat more mixed; refs.
56 and 57). Such a pattern of intuitive rejection is easily
explained by our framework, because rejecting unfair offers is
advantageous in repeated games, but costly in one-shot games.
Thus, the same logic that leads to selection favoring intuitive
cooperation and deliberative defection in our model’s one-shot
PDs can lead selection to favor intuitive rejection and de-
liberative acceptance in one-shot UGs.

In sum, we have integrated dual-process theories of cognition
from the behavioral sciences with formal game-theoretic models
of the evolution of cooperation. Our model shows how it can be
adaptive for humans to think both “fast and slow” and provides an
explanation for why people sometimes (but not always) cooperate
in one-shot anonymous interactions. In doing so, we provide a
formal demonstration of how spillovers from settings where co-
operation can be payoff-maximizing (e.g., repeated interactions)
lead to cooperation in social dilemmas where cooperation is never
in one’s self-interest (21-25, 58). Although many have suggested
that it takes cold, deliberative reasoning to get people to engage in
this kind of prosocial behavior, our evolutionary model finds pre-
cisely the opposite. It is not reflective thought that allows people to
forego their selfish impulses, but rather reflective thought that
undermines the impulse to cooperate.
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1 Strategy space and payoff function

Our main model considers agents playing 1-shot Prisoner’s Dilemma (PD) games or PDs with re-
ciprocal consequences (modeled using the framework of infinitely repeated games); and responding
using either a generalized intuition S; or paying a cost d* (stochastically sampled from the in-
terval [0,d]) to deliberate and tailor their strategy such that they use strategy S, if the game is
repeated and S if the game is 1-shot. In each interaction, agents choose either the cooperative
strategy tit-for-tat (TFT) or the non-cooperative strategy always defect (ALLD). Importantly, as
we demonstrate below in Section 6, our results are not specific to TFT and ALLD playing repeated
PDs, but instead generalize to a wide range of coordination games.

An agent’s strategy profile is specified by four variables: their (i) probability of intuitively playing
TFT S;, (ii) probability of playing TFT when they deliberate and face a repeated game S,., (iii)
probability of playing TFT (i.e. cooperating) when they deliberate and face a 1-shot game S, and
(iv) maximum acceptable cost of deliberation T'. Since we stipulate that the cost of deliberation is
sampled uniformly from the interval [0, d], an agent with threshold T' deliberates with probability
% and on average pays a cost % when deliberating. We use a uniform distribution for simplicity,

but more realistic cost distributions should not change our results qualitatively.

Here we specify the expected payoff 7(z,y) of an agent with strategy profile © = [S;,51,S,,T]
playing against an agent with strategy profile y = [S/, S1,S..,T’]. To do so, we calculate agent x’s
expected payoff from playing infinitely repeated PDs with probability p and 1-shot PDs with 1 — p,
over the cases in which (i) both agents deliberate (probability Td—?), (ii) agent = deliberates and agent

y decides intuitively (probability %(1 — %)), (iii) agent = decides intuitively and agent y deliberates
(probability (1 — %)%), and (iv) both agents decide intuitively (probability (1 — Z)(1 — 7/)):

T’ T T T’ T T T T T’
= — )+ s(1-= — )+ (1-5)= 1-9)(1-=
m(z,y) = —5-(mop — 5) + — (1 = —)(7pr )+ A= —2)7mp+ 1= )1 = —)mr
where mpp is agent z’s expected payoff when both agents deliberate, mp; is agent x’s expected
payoff when agent = deliberates and agent y uses intuition, and so on.

These expected payoffs are calculated based on the payoff tables for 1-shot and repeated PDs. In
1-shot games, TFT cooperates and pays a cost ¢ to give a benefit b to the partner, while ALLD
defects and does nothing. Thus, the payoff table for the 1-shot games is given by

1-shot PD Payoffs
TFT | ALLD
TFT b—c —c
ALLD b 0

where the row player’s payoff is shown.

To make payoffs in an infinitely repeated game comparable to those of a 1-shot game, we use the
average payoff per round. Here, two TFT agents cooperate with each other in every round and
earn average payoffs per round of b — ¢, while two ALLD agents defect every round, earning O.



Thus these payoffs are the same as the 1-shot PD. When a TFT agent and an ALLD agent meet,
however, the outcome differs from the 1-shot game, because the TFT agent cooperates only on the
first round, and then defects in every subsequent round. Because the interaction is modeled as being
infinitely repeated, the first round (where TFT cooperates) contributes only a negligible amount
to the average payoff. Therefore, both agents earn an average payoff per round of 0. Therefore the
payoff table for the infinitely repeated PD is given by

Infinitely Repeated PD Payoffs

TFT | ALLD
TFT b—c 0
ALLD 0 0

where b, c > 0.

Importantly, using total payoff (rather than average payoff per round) in a game with a finite con-
tinuation probability, such that the first round does influence payoffs and causes some negative cost
for TFT and positive benefit for ALLD, does not qualitatively change our results; see Section 6
below.

Substituting in relevant payoff values yields

mpp = P(SrSp(b—c)) + (1= p)(S191(b—¢) + S1(1 = §7)(—¢) + (1 - 51)51D)
mpr = p(SrSi(b—c)) + (1= p)(S15i(b - ¢) + S1(1 = §})(=c) + (1 — 51)S5;b)
mp = PSS —c)) + (L= p)(SiSi(b—¢) + Si(1 = §1)(—c) + (1 - 5;)S1b)
T = p(SiSi(b =) + (1= p)(SiSi(b— ) + Si(1 = S))(—c) + (1 = ) Sb)

2 Nash equilibrium calculations

2.1 Setup

To facilitate Nash equilibria calculations, we consider a strategy space which is simplified relative to
the main model in two ways: (i) agents’ intuitive response S; is limited to being either 0 (never play
TFT) or 1 (always play TFT); and (ii) agents’ deliberative responses are fixed to be S; = 0 and
S, = 1; i.e., always defecting when deliberating and facing a 1-shot game, and always playing TFT
when deliberating and facing a repeated game. As in the main model, agents specify a maximum
cost of deliberation T (0 < T < d) that they are willing to pay in order to deliberate, and this
determines when they deliberate.

Thus, an agent’s strategy profile is specified by two variables: 1) a binary variable S; indicating
whether or not the agent intuitively plays the cooperative strategy and 2) a continuous variable T'
indicating the agent’s maximum cost they are willing to pay to deliberate. We denote a strategy
profile for this reduced strategy space as @ = [S;,T]. (These simplifications of the intuitive and
deliberative strategy spaces are justified by our evolutionary simulations using the full strategy
space, whose results are in agreement with the results of the Nash calculation for the simplified



strategy space — see main text Figure 2.)

A strategy profile x is a Nash equilibrium if no strategy profile y is able to get a higher payoff
against = than = gets against itself. That is,

Yy : mw(x,z) > 7(y, ).

Given our restricted strategy space, the set of possible strategy profiles that an agent can adopt can
be thought of as two continuous sets: 1) the set of strategy profiles that intuitively defect (S; = 0)
and have threshold 0 < T < d, and 2) the set of strategy profiles that intuitively cooperate (S; = 1)
and have threshold 0 < T < d.

2.2 Intuitively defecting equilibria

We first consider whether any strategy profile with S; = 0 is a Nash. To do this, we calculate the
expression for the payoff that an agent with S; = 0 and T = T gets against an agent with S; = 0
and T =T

(5 -1 TT(% —pb—0)
2d d?
Since the concavity of this function (with respect to T') is always negative (SB—;W([O, T],[0,T"]) < 0),
there is a unique best-response [0, T3] that maximizes one’s payoff when playing against [0, 7”], which
can be found by asking what value of T satisfies the equation
0

(0,71, [0, 7)) = 0.

77([07 T]> [Ov T/]) =

Doing so yields

pb— )T’

7 .
Since a strategy profile must be a best response against itself in order to be Nash, it must be the
case that T, = T” in the above equation for 7" to be Nash. That is, this is the unique case in which
T’" maximizes its payoff by playing itself. Solving for 7" yields the solution of 7" = 0 (regardless
of the values of any of the parameters). Thus, [0, 0], a strategy that never deliberates and always
defects, is a best response to itself.

T, =

For the strategy [0, 0] to be a Nash, however, it must also be the case that no intuitively cooperative
strategy can beat it. This follows straightforwardly. The payoff that strategy [0,0] gets against
itself is O (since neither player is paying a cost of cooperation to benefit the other or paying a cost to
deliberate). Any intuitively cooperative strategy, on the other hand, is going to incur a cooperation
cost ¢ on the fraction of interactions that it cooperates. Moreover, since the [0, 0] agent is always
defecting, this intuitively cooperative strategy receives no benefit from the [0, 0] agent. Thus, its
payoff is always negative and it cannot invade the [0, 0] strategy under any value of p. As a result,
[0, 0] (referred to as the ”Intuitive defector (ID)” strategy profile in the main text) is always a Nash
equilibrium.



2.3 Purely deliberative equilibrium

Next we investigate the other boundary case of [0,d], a purely deliberative agent that never uses
intuition. Note that because this agent never uses intuition, the intuitive response S; is irrelevant,
such that the strategy [0, d] is functionally identical to [1,d]. We therefore refer to this strategy as
[—,d]. To see whether this strategy can be Nash, we start by asking what the best response [0, Tp]
is when playing against [—,d]. Using the expression above, we find 7, = p(b — ¢). This makes it
seem that [—, d] is not Nash because T}, # d (except in the special case where d = p(b — ¢)).

However, because d is the maximum cost of deliberation, T is bounded such that 0 < T < d.
Therefore, when d < p(b — ¢), this best response T, = p(b — ¢) lies outside the range of pos-
sible T' values. Recall that because aa—;w([O,T], [0,7']) < 0 is satisfied for all T,T",the payoff
7([0,T],[—, d]) decreases monotonically as T moves further from the best-response value p(b — ¢).
Thus, when d < p(b— ¢) (such that the best response is greater than the maximum value of T'), the
value of T within the allowed interval which best responds to [—,d] is in fact [—, d] itself (i.e. the
maximum allowed value of T').

We find a similar result when asking which intuitively cooperative strategy best-responds to [—, d].
Solving a%w([l, T],[—,d]) = 0 gives a best response of [1, ¢(1 —p)]. Thus, by the logic from the pre-
ceding paragraph, [—, d] cannot be beaten by any intuitively cooperative strategies if d < ¢(1 — p).
As a result, we see that the purely deliberative strategy [—, d| can be Nash when the maximum cost
of deliberation is sufficiently small, such that both d < p(b — ¢) and d < ¢(1 — p) are satisfied.

This result is natural - if deliberating were free, it would obviously be better to deliberate in our
model than to use intuition. Thus it is no surprise that there is a minimum d above which it is
no longer worth paying to deliberate on all occasions. Given the wide-spread use of intuition by
humans, we believe it is a safe assumption that the d > p(b — ¢), ¢(1 — p) condition is satisfied.

2.4 Intuitively cooperating equilibria

We next consider whether any intuitively cooperative strategy profile is a Nash. Following the
procedure used above, we calculate the expression for the payoff that an intuitively cooperative
agent with strategy profile [1,7T] gets against an intuitively cooperative agent with strategy profile
[1,T"]:

(=P~ (b= + D& )T
d
(=)~ (1= p)e— D)1 ~ )1~ =)
G O
d2
(1= pe —plb— )1~ )"
: |

77([17T]7 [LT/]) =

We then find the best-response T}, by solving for when the partial derivative of this expression with
respect to T is 0, yielding



T, = (1 —p)e.

Thus, an intuitively cooperative agent’s best response against another intuitively cooperative agent
is to deliberate only in cases where the cost of deliberation is not greater than (1 — p)c. Note that
this is the product of the probability of a 1-shot game occurring (1 — p) and the cost of cooperating
¢, which is precisely the expected benefit of deliberation for an intuitive cooperator (since what
deliberation does here is allow the agent to override her cooperative intuition when she finds herself
in a 1-shot game).

In order to test whether the strategy profile [1, ¢(1 — p)] is Nash, we must also consider whether any
intuitively defective strategy profile [0, T’] can beat it. To do this, we find the intuitively defective
strategy profile that is a best response against the optimal intuitively cooperative strategy profile
[1, (1 = p)c] by solving Z-([0,T7,[1, (1 — p)c]) = 0 for T

This yields the strategy profile [0, p(b — ¢)] as the intuitively defecting strategy that performs best
against the intuitively cooperative strategy [1, (1 — p)c]. We then find the conditions under which
the optimal intuitively cooperative strategy profile does better against itself than the best response
intuitive defecting strategy profile does,

m([1, (1 = p)e], [1, (1 = p)e]) = =([0,p(b — )], [1, (1 — p)c]),
in order to find out when [1, (1 — p)c] is Nash. We find that this inequality is satisfied when p > ¢.

It is also necessary to consider whether [1,¢(1 — p)] can be beaten in the boundary case where
d > (1 —p)e, but d < p(b — ¢), such that the best response against [1, (1 — p)c| is actually [—,d]
(as T = p(b — c) is outside the allowed range). Doing so, we find that it is always the case that
7([1, (1 =p)c],[1,(1 =p)c]) > n([—,d],[1, (1 — p)c]) when p > ¢. Thus the purely deliberative agent
7([—, d] cannot invade the intuitively cooperative strategy under these conditions.

We therefore conclude that the intuitively cooperative strategy profile [1, (1 — p)c] is a Nash equi-
librium when p > .

2.5 Summary of Nash results

In sum, we find two main equilibria:

1. The Intuitive Defector (ID) strategy profile that intuitively defects (S; = 0) and never delib-
erates (I' = 0) is always Nash (the deliberative strategy variables S and S, are irrelevant, as
this strategy never deliberates).

2. The Dual-process Cooperator (DC) strategy profile that intuitively plays TFT (S; = 1),
deliberates when the cost of deliberation is no greater than T'= (1 — p)¢, and deliberatively
plays TFT in repeated games (S, = 1) and deliberatively defects in 1-shot games (S; = 0),
is Nash when repeated games are sufficiently common, p > ¢/b.



In addition, a purely deliberative strategy that never uses intuition (7' = d, thus the value of S;
is irrelevant), and deliberatively plays TFT in repeated games (S, = 1) and deliberatively defects
in 1-shot games (S; = 0), is Nash when the maximum cost of deliberation is sufficiently small,
d < c¢(l1—p)and d < p(b— c), such that it is always worth paying to deliberate. As this behavior
is psychologically unrealistic, we focus our evolutionary analyses on parameter regions where d is
large enough to make this strategy not an equilibrium.

2.6 Why is there no equilibrium with S; =0 and 7" > 07

A notable feature of our Nash results is the absence of a strategy that intuitively defects but uses
deliberation to play TFT when faced with a repeated game. Why can’t such a strategy be Nash?
The answer is as follows. Unlike in 1-shot games, where it is always beneficial for an agent to defect
no matter what the other agent does (because she always avoids paying the cost of cooperation
¢), the benefit of playing TFT in repeated games depends on coordinating with the other agent.
Hence, when two intuitively defecting agents interact and play a repeated game, an agent that pays
a cost to deliberate and thereby switch to TFT only benefits from doing so when her partner also
deliberates (and thus also plays TFT). As a result, the returns from deliberative cooperation in
repeated games for these agents depend not only on the benefit of mutual cooperation b — ¢ and
the probability of repeated games p, but also on the probability that the other player deliberates.

Specifically, when two intuitive defectors [0, 7] and [0,7"] interact, the expected gain from deliber-
ating for the first agent is %, the product of the probability of there being a repeated game

p, the benefit of mutual cooperation b — ¢, and the probability that the partner also deliberates

%. As a result, she should be willing to pay a maximum cost of deliberation 7% = ”(FTC)T/ to
get this benefit; and indeed, as we saw above, the best response to [0,7"] is [0, p(b%ﬂﬂ]. Thus,

assuming that one’s partner has T > 0, there is always an incentive to deviate by deliberating
less (T* < T"). In other words, because of the coordination problem presented by cooperation in
repeated games, any nonzero amount of deliberation 77 among intuitive defectors is unstable and
will be out-performed by intuitive defectors who engage in less deliberation. Therefore, the only
equilibrium level of deliberation for a population of intuitive defectors is none at all (T' = 0). (Or,
as discussed above, if the maximum cost of deliberation d is sufficiently low, d < p(b — ¢), then
agents with 77 < d will instead be beaten by more deliberative agents with T* > T”, resulting in
the equilibrium where agents always deliberate and never use intuition.)

2.7 Nash calculations with assortment

We now consider a version of the game with assortment a > 0. In the context of population
dynamics, assortment represents non-random mixing, such that with probability (1 — a) a given
agent plays with another agent selected at random from the population, whereas with probability a
that agents plays with another agent having the same strategy as herself. To incorporate assortment
in our Nash calculations, we therefore modify the Nash condition to be

Yy w(z,x) > (1= a)n(y, z) + an(y,y).

We then solve for strategies that are best responses to themselves, in the manner described above.
(Note that when a = 0, this is exactly equivalent to the above calculations.) Doing so finds that



the ID strategy remains the same when assortment is added (T" = 0), but that the DC strategy
now deliberates with 7' = (1 — p)(c — ba). Note that a consequence of this is that when a = ¢/b,
the DC strategy reaches the boundary case of [1,0], such that a > ¢/b implies no deliberation by
DC, just intuitive cooperation (such that DC stops being an actual dual-process strategy).

3 Risk dominance calculations

3.1 Without assortment

Given that we have identified the game’s two Nash equilibria, we are now interested in identifying
when one equilibrium or the other will be favored by natural selection. For parameters where ID
is the only Nash, it is clearly predicted that evolution will lead to ID. When DC becomes Nash,
however, ID also remains Nash. Thus knowing when DC becomes Nash is not enough to know
when selection will favor DC.

Risk-dominance, which is a stricter criterion than Nash, has been shown to answer this question:
in symmetric 222 games such as the one we study, when two symmetric equilibria exist, evolution
will favor the risk-dominant equilibrium [1].

One Nash risk-dominates another Nash when the first Nash earns a higher expected payoff than
the second Nash when there is a 50% chance of playing against either of the two strategies. Or,
in population dynamic terms, the risk-dominant strategy profile is the one that fares better in a
population where both are equally common.

We now ask when DC [1, ¢(1 — p)] risk-dominates ID [0, 0] as a function of p. First, we consider the
expected payoffs of these two strategy profiles against themselves and each other:

7(ID,ID) =0

1 —p)C) o (1 —p)202
d 2d

7(ID,DC) =b(1 - p)(1— %)

(DO, DC) = (1 p)(b— ) + p(b—))(L=P 12
~ (L=p)*A(5(1 = p)e—p(b—c))

m(DC,ID) = —c(1—-p)(1— (

d2?
L (A =p)e(=b(1 = p) —p(b— ) + 5(1 = p)o) (P — 1)
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(1= ple(—c(1 —p) +p(b— (P ~ 1)

d
DC risk-dominates ID when

%W(DC, D)+ %ﬁ(pc, DC) > %ﬁ(m, D)+ %W(ID,DC).



Solving for p in the above equation yields the following condition:

3(2¢? — bd — cd + v/dv/—4bc® + 4¢3 + b2d + 2bed + ¢2d)

> .
p )

As we will see below, this value of p successfully captures the transition point we observe in evo-
lutionary dynamics from a population of all ID players to a population of all DC players. For
example, for b = 4, ¢ = 1, and d = 1, DC begins to risk dominate ID when p > .30 (see Figure
2 of main text). Some other values, which we explore in steady state analyses below, include the
following:

b| c| d | pat which DC risk-dominates ID
211 1 .62
8|1 1 14
4| 2 1 .50
41 5] 1 .19
411 1|.75 .25
411 2 .36

3.2 With assortment

When including assortment a > 0, the risk dominance condition for DC becomes

ar(DC, DC) + (1 — a)(%w(DC, D)+ %W(DC, DC)) >
an(ID,ID) + (1 — a)(%w(ID,ID) + %w(m, DCY)

with the DC agent’s deliberation threshold now being T'= (1 — p)(c — ba) (as shown above in the
Nash calculations with assortment).

Thus, the minimum a value at which DC comes to risk dominate ID is given by

1
(0% — 2pb> + p2b?)
(2bc — 4pbc + 2p*be — 2bd + pbd + ped
+ /(=2bc + 4pbc — 2p2be + 2bd + pbd + ped)? — 4(b2 — 2pb? + p2b2) (2 — 2pc2 + p2c2 + pbd — 2¢d + ped)).

>
@73

4 Evolutionary dynamics

4.1 Basic setup

We now turn from Nash calculations to evolutionary dynamics. We study the transmission of
strategies through an evolutionary process, which can be interpreted either as genetic evolution or
as social learning. In both cases, strategies that earn higher payoffs are more likely to spread in the
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population, while lower payoff strategies tend to die out. Novel strategies are introduced by muta-
tion in the case of genetic evolution or innovation and experimentation in the case of social learning.

We study a population of N agents evolving via a frequency dependent Moran process with an
exponential payoff function [2]. In each generation, one agent is randomly selected to change strat-
egy. With probability u, a mutation occurs and the agent picks a new strategy at random. With
probability (1 — u), the agent adopts the strategy of another agent j, who is selected from the
population with probability proportional to e¥7, where w is the intensity of selection and ¢; is
the expected payoff of agent j when interacting with agents that have the same strategy with prob-
ability a, and interacting with agents picked at random from the population with probability (1—a).

For ease of calculation, our main analyses focus on the limit of low mutation. Later, we also explore
higher mutation rates using agent-based simulations, and demonstrate the robustness of our low
mutation limit calculations.

4.2 Limit of low mutation calculation method

In the low mutation limit, a mutant either goes to fixation or dies out before another mutant ap-
pears. Thus, the population makes transitions between homogeneous states, where all agents use
the same strategy. Here the success of a given strategy depends on its ability to invade other strate-
gies, and to resist invasion by other strategies. We use an exact numerical calculation to determine
the average frequency of each strategy in the stationary distribution [3, 4, 5].

Let s; be the frequency of strategy i, with a total of M strategies. We can then assemble a transition
matrix between homogeneous states of the system. The transition probability from state i to state
j is the product of the probability of a mutant of type j arising (ﬁ) and the fixation probability
of a single mutant j in a population of i players, p; ;. The probability of staying in state 4 is thus
1 — 57— "4 Pr,i» where p;; = 0. This transition matrix can then be used to calculate the steady
state frequency distribution s* of strategies:

* _ . Pj1 P1,2 . P1,M *
51 1 %J M—1 M71p 1/)»171 51

* 2,1 _ ) 7,2 .. 2, M *
52 B M-1 LR S v, M1 52

* PM,1 PM,2 .. _  PiM *
Sm M—1 M-1 L= X557 SMm

The eigenvector corresponding to the largest eigenvalue (1) of this matrix gives the steady state
distribution of the stochastic process.

Note that this method requires discretizing the strategy space, such that there is some finite number
of strategies M that agents can select. We consider a strategy space in which: (i) agents’ coopera-
tion strategies S;, S1, and S, are limited to being either 0 (never play the cooperative strategy) or 1
(always play the cooperative strategy); and (ii) agents’ maximum cost of deliberation 7' (0 < T < d)
that they are willing to pay in order to deliberate is rounded to the nearest 1% (so T is selected from
the set {0,d/10,2d/10,...,d}). Thus, the strategy space consists of a total of 2% 2% 2% 11 = 88
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strategies.

Using the Moran process, the fixation probability pp 4 (the probability that a single A mutant
introduced into a population of B-players will take over) is calculated according to an exponential
fitness function. In a population of i A-players and N — i B-players, the fitness of an A-player f;
and B-player g; are defined as

fi _ ew(afr(ArA)Jr(lfa)(]@:IIW(A,A)+ Ijg:iﬂ(A,B)))

g = ew(am(B,B)+(1=a)( gty m(B,A)+ it n(B,B)))
where 7(A, A) is the expected payoff of an A-player against an A-player, m(A, B) is the expected
payoff of an A-player against a B-player, etc.

The fixation probability of a single A-player in a population of B-players can then be calculated as
follows:

1
PB,A = N-117k &
DI |

i

The calculations presented in the main text numerically evaluate this expression for each strategy
pair and then solve for the steady state distribution according to the procedure described above.
As shown in Figure S1, these evolutionary calculations are in quantitative agreement with the risk-
dominance calculations across p and a values shown in the main text Figure 3.

5 Robustness of evolutionary results

5.1 Robustness to parameter variation

Figure S2 shows results of evolutionary steady state calculations for various parameter sets. In
each case, we see a qualitatively equivalent pattern to what is observed in the main text Fig 2a:
the steady state transitions from intuitive defection S; = 0 with little deliberation 7"~ 0 when p is
small, to intuitive cooperation S; = 1 with substantial deliberation 7' >> 0 implementing cooper-
ation in repeated games S, = 1 and defection in 1-shot games S; = 0 when p is sufficiently large.
Then, as p increases further, the steady state value of T decreases. (Note that for some parameter
values (e.g. Figure S2 panels b, ¢, and e), when DC becomes risk-dominant, the equilibrium level
of T is close to 1 such that agents almost never use intuition, and therefore initially there is little
selection pressure on S;, leading to S; =~ 0.5.)

Quantitatively, the transition from intuitive defection and non-deliberation to intuitive cooperation
and deliberation occurs at precisely the value of p where DC begins to risk-dominate ID; and after
this point the average value of T" matches that of DC, with T'= (1 — p)c. Thus, these evolutionary
calculations show the power of the Nash calculations for characterizing the behavior of our system.
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5.2 Robustness to higher mutation rates and probabilistic strategies

We now compare the results of the steady state calculations presented in the main text with agent-
based simulations. These simulations use exactly the same evolutionary process as the calculations
described above, but relax two simplifying assumptions made in the calculations: the simulations
(i) allow agents’ probabilities of playing cooperative strategies S;,.S1 and S, to take on any value
on the interval [0, 1], instead of only allowing 0 or 1 as in the calculations; allow agents’ deliberation
threshold T' to take on any value on the interval [0,d], instead of only allowing discrete values in
steps of d/10, and (iii) relax the calculation’s assumption of vanishingly small mutation and instead
use a relatively high mutation rate of u = 0.05. For each set of parameters, we conduct 10 simulation
runs, each of which lasts 107 generations. We then show the value of each of the 4 strategy variables
Si, 51,5, and T, averaged over all generations of all 10 simulation runs (Figure S3 symbols). For
comparison, we also show the low mutation limit calculation results (Figure S3 lines). Critically,
Figure S3 shows that these agent-based simulations produce very similar results to the calculations.
This demonstrates the validity of the calculation, despite its simplifying assumptions.

6 Generalized coordination game analysis

6.1 Setup

The key idea underlying our model is that cooperation sometimes involves a social dilemma (e.g.
the 1-shot PD), but other times involves coordination. In our main model, we focus on the infinitely
repeated PD as our example of coordination. Doing so, we find that there are two main strategies
that can be Nash in this setup: (i) a strategy that intuitively cooperates and sometimes deliberates
when the cost of deliberation is less than T = ¢(1 — p),and (ii) a strategy that always intuitively
defects and never deliberates. (We also find that when the maximum possible cost of deliberation
d is especially low (d < p(b — ¢),c(1 — p)), agents who always deliberate and never use intuition
(T = d) can also be Nash.)

Here, we demonstrate that these basic results extend to cooperative interactions that involve coor-
dination more generally, rather than being specific to infinitely repeated PDs. To do so, we consider
a game where with probability 1 — p agents play the 1-shot PD defined above, and with probability
p they play a coordination game with the following payoff structure:

Cooperate | Defect
Cooperate A+ B A-C
Defect A+B-D A
where A,C' > 0 and B, D > 0.

This payoff structure has the following features. First, it captures the essence of coordination prob-
lems, which is that you cannot improve your payoff by playing something different from the other
person (the penality of not coordinating when the partner defects is captured by C' > 0, and when
the other person cooperates by D > 0). As we are interested in cooperative coordination problems,
we introduce two additional features: that the cooperative equlibrium is more efficient (higher pay-
off) than the non-cooperative equilbrium, captured by B > 0; and that it requires coordination to
achieve the full benefits of this cooperation, such that defecting when the partner cooperates leads
to a strictly lower payoff than cooperating when the partner cooperates, D > 0 (rather the more
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general coordination requirement of just D > 0). Note that this payoff structure reduces to the
infinitely repeated PD using A=0, B=b—¢,C=0,D=b—c.

Using this much more general specification of cooperative coordination problems, we perform a
Nash analysis and ask whether (i) we continue to observe the dual process, intuitively cooperative
strategy profile that we found using the repeated PD, and whether (ii) an intuitively defecting Nash
that sometimes deliberates, which was not observed using the repeated PD, can occur here. We use
the same approach described above, in which we focus our Nash analysis on strategies with .S, = 1,
S1 =0, and S; either 0 or 1.

6.2 Intuitively cooperating equilibria

As we did for the repeated PD model, we calculate the best response deliberation threshold with T
for an intuitively cooperating agent playing against an intuitively cooperating agent with delibera-
tion threshold T'. We find, as before, that the best response is T, = ¢(1 — p), regardless of the value
of T" (or any of the coordination game parameters). To determine when this strategy [1,c(1 — p)]
is Nash, we next consider under what conditions an intuitively defecting agent could beat it. To
do so, we find the best response intuitively defecting strategy against [1,¢(1 — p)], which we find to
be [0, pD] (note that this matches the result from repeated PD model, where the best response was
[0,p(b—c)]). We find that 7([1,c(1—p)], [1,c(1—=p)]) > 7([p,pD], [1, c(1 —p)]), such that [1,c(1—p)]
is Nash, when p > 5 and d > ¢(1 — p). (Note, again, that this matches the results from the
repeated PD model in which the Dual-process Cooperator was an equilibrium when p > ¢/b and
d>c(1-p).)

6.3 Purely deliberative equilibrium

Next, we consider the boundary case that always deliberates, [—,d]. Analogous to the results for
the repeated PD version, we find that [—, d] is Nash when d < pD and d < ¢(1 — p) (as the best
response strategy when these conditions are met has T > d).

6.4 Intuitively defecting equilibria

Finally, we consider the intuitively defecting case. Unlike in the repeated PD model, we now find
that there are two possible intuitively defecting equilibria.

We begin by considering the boundary case [0,0]. We find that the best responding intuitive de-
fector against [0, 0] is [0, —Cp]. Because T cannot be negative, this means that among the allowed
values of T, [0,0] is the best response to itself (following the logic explained above in the repeated
PD Nash calculations for the purely deliberative equilibrium). Moreover, we find that no intuitively
cooperative strategy can ever do better against [0, 0] than [0, 0] does against itself. Thus, as in the
repeated PD model, [0, 0], a strategy that never deliberates and always intuitively defects, is always
Nash.

Unlike in the repeated PD model, however, our general calculation of the best response deliberation
threshold for an intuitive defector playing against [0,7"] gives
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C+D
T, = MT/ — Cp,
d
such that the intuitive defector strategy that best responds to itself is given by [0 ﬁ]. We

» (C+D)p—d
find that if the maximum cost of deliberation is sufficiently small, such that d < pD and either
d<c(l-p)or0<C< % are satisfied, then this strategy (which has S; = 0 and T > 0)
is Nash.

Thus, unlike in the repeated PD model, it is therefore possible to have a Nash equilibirium that
intuitively defects but sometimes uses deliberation to cooperate in the coordination game. Critically,
however, this strategy can never be risk-dominant, and therefore is never favored by selection!
Whenever [0, (ng%} is Nash, there are always two other strategies which are Nash, and both of

these other strategies always risk-dominate [0, (Cf;%]: [0, 0] is always Nash; when d < pD and
d < ¢(1—p), the purely deliberative strategy [—, d] is also Nash; when d < pD and d > ¢(1 —p) but
0<C< %, then [1, ¢(1 — p)] is also Nash. Therefore, as in the repeated PD model, the
more general coordination model finds that an intuitively defecting strategy that uses deliberation

to cooperate when it is beneficial to do so can never be favored by selection.

6.5 Summary

In sum, the more general social dilemma versus coordination model we have analyzed provides two
main conclusions.

1. If the maximum cost of deliberation d is sufficiently large, we observe precisely the same two
equilibria observed in the simpler model: (i) an equilibrium that intuitively cooperates and
sometimes deliberates [1,¢(1 — p)], and (ii) an equilibrium that always intuitively defects and
never deliberates [0, 0].

2. If the maximum cost of deliberation d is smaller, more complicated equilibria can emerge, such
as an equilibrium that intuitively defects and does sometimes deliberate. Crucially, however,
this equilibrium is always risk-dominated by another equilibrium, and therefore will never be
selected for.

Thus, the conclusions from the repeated PD model hold across all models where agents sometimes
play 1-shot PD social dilemmas and other times play cooperative coordination games: selection can
favor dual process cooperators, but not dual process defectors.

6.6 Application to repeated PD with finite continuation probability

Our main analyses used the average payoff per round from an infinitely repeated PD between
TFT and ALLD for the game with reciprocity. Here, we use the generalized coordination game
calculations above to show that these results extend to the more realistic case of total payoff
in a repeated PD between TFT and ALLD where after every round, another round occurs with
probability d (such that on average there are 1/(1— ) rounds per game), yielding the payoff matrix
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PD with continuation probability §

TFT | ALLD
TFT | = —c
ALLD b 0
where b,c > 0,0 < 6 < 1.
Thus, in terms of the generalized coordination game, this gives A = 0, B = 2=¢, C = ¢, D = 2= .

Plugging in these values, we find that the DC strategy continues to be specified by [1, c(li )],
just as it was for the infinitely repeated PD, and that the condition for DC to be an equlibrium
becomes p > and d > ¢(1 —p).

C
=5 —b+c

6.7 Application to general PD with reciprocal consequences

Finally, we use our generalized results to show that the conclusions of the main model, which used
an infinitely repeated PD, extend to the general PD with reciprocity framework outlined in the
main text. Here, with probability p, the PD payoff structure is modified such that when one player
defects and the other cooperates, the defector’s payoff is reduced by « and the cooperaters payoff
is increased by 3, yielding the payoff matrix

PD with Reciprocal Consequences
C D
C|b—c| —c+p
D|b—»~n 0
where b, c,y, 5 > 0.

In our main model, we focused on the case where v = b and 8 = ¢, yielding a payoff structure
that is equivalent to average payoff per round of TFT and ALLD playing an infinitely repeated
PD. Plugging this more general form into our results for the cooperative coordination game (using
A=0,B=b—c¢,C=c—p,D=~v—c), we find that the DC strategy continues to be specified by
[1,¢(1 — p)], just as it was for the infinitely repeated PD, and that the condition for DC to be an
equlibrium becomes p > % and d > ¢(1 — p).
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Figure S1: Ewolutionary calculations of the steady state distribution using N = 50, b =4, ¢ = 1,
d=1, w =6, for various values of p and a. Shown are the average values of T (a), S; (b), Sy (c),
and Sy (d). We see quantitative agreement with the risk-dominance calculations shown in the main
text Figure 3: S; is near 0 when ID is risk-dominant and near 1 when DC' is risk-dominant; T is
near 0 when ID is risk-dominant and equal to (¢ —ba)(1 — p) when DC is risk-dominant; and S, is
near 1 while Sy is near 0, except when T is close to zero such that there is little selection pressure
on deliberative responses, leading neutral drift to pull S, and S1 toward 0.5.
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Figure S2: Evolutionary calculations of the steady state distribution using N = 50, a = 0 and (a)
b=2,¢=1,d=1Lw=6; (b))b=8,c=1,d=1L w=3;(c)b=4,¢c=2,d=1, w=5;
(A)b=4,¢c=5,d=1,w=06; (e)b=4,¢c=1,d=.7, w=>5; (f)b=4,¢c=1,d =2,
w = 5. The point at which DC transitions to risk-dominating ID is presented as a dotted black line
for comparison. (Note that because of our use of exponential fitness, for certain parameter sets a
smaller selection strength w was needed to prevent the post-exponentiation fitnesses from exceeding
MATLAB’s computational limits.)
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Figure S3: Results of agent-based simulations (symbols) and steady state calculations (lines) showing
the average value of each strategy variable, using N =50, b=4,c=1,d=1, w=6. (a) Fizing
a=0; (b) fixzing p=0.2; (c) fixing p = 0.6.



