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ARTICLE INFO ABSTRACT

Keywords: When solving problems, like making predictions or choices, people often “sample” possibilities into mind. Here,
Sampling we consider whether there is structure to the kinds of thoughts people sample by default—that is, without an
Decisif)n-making explicit goal. Across three experiments we found that what comes to mind by default are samples from a
gznms;:lot:::;s probability distribution that combines what people think is likely and what they think is good. Experiment 1

found that the first quantities that come to mind for everyday behaviors and events are quantities that combine
what is average and ideal. Experiment 2 found, in a manipulated context, that the distribution of numbers that
come to mind resemble the mathematical product of the presented statistical distribution and a (softmax-
transformed) prescriptive distribution. Experiment 3 replicated these findings in a visual domain. These results
provide insight into the process generating people’s conscious thoughts and invite new questions about the value
of thinking about things that are both likely and good.

1. Introduction

Of all the amounts of TV that a person might watch in a day, think of
one particular amount. Go ahead, give it a try: What is the first amount
of television watching per day that comes to your mind? Was it one hour?
Two? Maybe five or six? There are no right or wrong answers to this
question. Clearly, however, some amounts (three) are more likely than
others (seventeen).

Our goal is to understand what comes to mind by default—that is, in
the absence of an explicit task. Of course, without any task, people’s
thoughts may be unstructured and uninteresting. In contrast to this
possibility, we find structure that is both consistent and unique.

Specifically, we ask whether the things that first come to mind are
usefully represented as samples from a probability distribution.
Consider again the example of an amount of television watching per day.
Intuitively, the set of possible amounts that we could call to mind
ranges from zero to twenty-four hours. Within this range, some
amounts are much more likely to be sampled into mind than others.
When sampling, on what basis do people weight three more highly than
seventeen?

One obvious hypothesis is that the mind simply defaults to one of
the standard weightings used in ordinary tasks. The existing literature

offers two likely candidates. First, for many tasks, people sample from
sets of things weighted by a representation of the probability (i.e.,
frequency) of those things. Such sampling processes are an important
starting point for many methods of statistical inference over generative
models. For instance, in such a model, a person might encode that 40%
of people exercise zero hours a week, 15% exercise one hour, 10%
exercise two hours, and so forth—in other words, their generative
model is designed to approximate the actual probability with which
these types of events occur, are encountered, or are performed in the
world (or perhaps would be, given hypothetical conditions). Much prior
research shows that people are able to sample from such statistical
distributions (e.g., Griffiths & Tenenbaum, 2006; Vul, Goodman,
Griffiths, & Tenenbaum, 2014), and indeed may estimate distributional
properties precisely by sampling from them (Gershman, Vul, &
Tenenbaum, 2012; Icard, 2016; Vul & Pashler, 2008; though see Lieder,
Griffiths, & Hsu, 2018). In sum, as a first step in trying to predict or
explain events, we often engage in sampling weighted by probability.
Second, in order to make choices, people represent the prescriptive
value of different types of things.! For instance, perhaps exercising zero
hours a week is pretty bad, three hours is really good, and 60 hours is
really bad. To turn values into choice, however, people cannot directly
sample some option from their set of represented values, as these values
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are not probabilities. Rather, choices can be modeled as value-weighted
samples from a translation of the value function into a probability dis-
tribution (Luce, 1959). The most obvious such translation of value into
choice probabilities would simply assume that agents always choose the
option with maximum value and never choose anything else (the
hardmax function). For a variety of reasons, though, most models of
value-guided decision-making instead make use of a softmax function,
which exponentiates the value of all options and then normalizes these
values into a probability distribution of choice probabilities that range
from 0 and 1. In economics, this transformation typically reflects the
experimenter’s own uncertainty about the true option values that
people are using to make their choices; people are assumed to be de-
terministically choosing the option with highest value (i.e., performing
hardmax) but, because the experimenter can only noisily estimates
people’s option values, the softmax function captures this uncertainty
under certain assumptions about the noise in the estimates (McFadden,
1973). In contrast, in reinforcement learning, individual agents are
assumed to implement something like softmax over their option values
for the purpose of exploring possible options that are not currently va-
lued as best (e.g., a new restaurant that just opened across the street),
but may turn out to be better than the option that is currently most
valued (e.g., a classic favorite restaurant; Sutton & Barto, 1998).
Whichever of these explanations is at work, it is clear that, when our
task is decision-making, our decisions seem to be approximated by
softmax-weighted samples of value.

For different tasks, then, people sample according to different
weightings—they focus on probability for prediction tasks, but on value
— converted to softmax choice probabilities — for decision-making.
How might these task-specific sampling strategies influence what comes
to mind in the absence of any explicit task?

One uninteresting possibility is that people uniformly default to one
or the other task-specific approach—everybody samples according to
probability, or everybody samples according to value. A related possi-
bility is that people simply view their task as ambiguous, and everybody
resolves the ambiguity by defaulting to a single task-specific approach,
but different people default to different tasks. If so, the distribution of
what comes to mind in a population will be some linear combination of
the responses of people engaging in a purely statistical task of predic-
tion and the responses of people engaging in a purely normative task of
decision-making.

Here, we consider a different, more surprising proposal: What
comes to mind is not a simple mixture of the task-specific sampling
processes involved in prediction and decision-making, but is a dis-
tinctive compromise between the two. Specifically, we suggest that what
comes to mind by default are things that are simultaneously probable
and valuable (i.e., things that are proportional to the mathematical
product of these two task-specific sampling distributions). In contrast,
according to the uninteresting mixture view, an amount comes to mind
simply when it is either valuable or probable (i.e., is an additive mixture
of the two). If the compromise view is right, then what comes to mind
by default is governed by a specific and unique weighting function of its
own, and stands out as an interesting object of study in its own right.

Our proposal is inspired by a diverse body of recent empirical
findings. Remarkably, across tasks that are superficially very dissimilar,
people combine probability and value information into a sui generis,
hybrid representation when engaged in many basic forms of reasoning
(e.g., Bear & Knobe, 2017; Icard, Kominsky, & Knobe, 2017; Phillips &
Cushman, 2017; Wysocki, 2018). For example, when participants are
asked what amount of television is ‘normal,' their answers are inter-
mediate between purely probabilistic and value-based judgments (Bear
& Knobe, 2017). Similar results have been found across numerous other
domains (Wysocki, 2018) and using several other measures, such as
causal judgment (Icard et al., 2017), modal reasoning (Phillips &
Cushman, 2017), counterfactual reasoning (Kahneman & Miller, 1986),
gradable adjectives (Egré & Cova, 2015), and concept prototypes (Bear
& Knobe, 2017). These experiments are not amenable, however, to a

Cognition 194 (2020) 104057

precise quantitative characterization of the manner in which prob-
ability and value information are integrated.

In three experiments, we tested the hypothesis that what first comes
to mind is a blend of statistical probability and prescriptive value.
Initially, we explored this question qualitatively in a naturalistic setting
(Experiment 1; cf. Bear & Knobe, 2017). We then designed two artificial
settings to quantitatively model the sampling distribution of what
comes to mind. One of these settings asked about the number of min-
utes that people engaged in a fictional hobby (Experiment 2), while the
other asked people to visually imagine a fictional tool of a certain
length (Experiment 3). Despite the different modalities in which these
intuitions were probed, we found strong support for the hypothesis that
people sample from a unique probability distribution that combines
statistical and prescriptive information.

2. Experiment 1

In this experiment, we examined how people’s intuitions about
average and ideal amounts of various ordinary behaviors or events
relate to what numbers spontaneously come to mind. We developed a
list of 40 such behaviors or events (such as amounts of TV watching per
day), 20 of which were borrowed from a similar design from Bear and
Knobe (2017). We hypothesized that the numbers that first come to
mind would be influenced not only by what was considered average,
but also what was considered ideal.

2.1. Method

This study proceeded in two parts on Amazon’s Mechanical Turk.
One set of 100 participants was randomly assigned to judge either the
average or ideal amount of a set of 20 randomly chosen behaviors or
activities, which were randomly selected from the total set of 40. (This
sample size, and the one reported below, was chosen on the basis of
past work (Bear & Knobe, 2017) and past pilot data, which suggested
that we would have sufficient power to detect an influence of average
and ideal judgments at the item level.) These 20 items were presented
in random order to participants. Thus, for 20 of the 40 domains, ap-
proximately 50 participants were asked to fill in responses like
“Average number of hours of TV that a person watches in a day”, and
approximately 50 other participants were asked to fill in responses like
“Ideal number of hours of TV for a person to watch in a day”. To avoid
demand characteristics, participants were always asked only about ei-
ther averages or ideals, never both in the same session.

A separate group of 100 subjects participated in the sampling part of
the experiment, in which they gave amounts that first came to mind.
Participants were instructed to simply “enter the first number that
comes to mind” when reading the presented phrase, and it was em-
phasized that there was no “correct” answer. In order to encourage
participants to give a spontaneous judgment, we instructed them to try
to give each response in under 5s. However, responses were still soli-
cited after this time delay. After completing two practice trials, the
participants were presented with a random 20 out of 40 domains,
presented in random order. Each page simply displayed a phrase like
“NUMBER OF HOURS OF TV FOR A PERSON TO WATCH IN A DAY”
and a timer counting down from 5s, along with a box for subjects to
give their response.

2.2. Results

Participants’ responses in each condition were averaged for each of
our 40 domains (Table 1). All responses from three participants who
failed an attention check were excluded from further analysis. In ad-
dition, 89 item-level responses that were 3 standard deviations away
from the mean answer for that item’s dependent measure were elimi-
nated.

Since our questions involved very different kinds of quantities
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Table 1
Mean Average, Ideal, and Sample Judgments across Domains.

Domain Average Ideal Sample Domain Average Ideal Sample
Hours TV/day 3.38 1.63 2.87 Drinks frat bro consumes/wkend 11.12 6.63 15.64
Sugary drinks/wk 9.17 2.41 5.91 Times honk at drivers/wk 2.67 0.72 2.53
Hours Exercise/wk 4.00 5.58 6.33 Mins on social media/day 60.57 35.40 59.10
Cals consumed/day 2225.91 1900.00 1859.24 Times parent punishes child/month 6.58 2.28 3.25
Servings fruits & veggies/month 40.00 94.96 39.16 Miles walked/wk 9.79 12.96 9.96
Lies told/wk 9.57 1.17 8.44 % people drive drunk 11.30 1.23 9.45
Mins late for appointment 14.22 3.04 13.60 Times cheat on partner in life 1.52 0.00 1.73
Books read/yr 7.22 17.40 8.45 Times snooze alarm/day 2.13 0.76 1.98
Romantic partners in life 6.09 5.77 8.06 Parking tickets/yr 1.67 0.04 1.37
Country’s international conflicts/decade 11.67 1.36 4.15 Times car wash/yr 10.77 12.85 11.31
$ cheated on taxes 437.45 82.00 350.32 Cups coffee/day 2.21 1.84 2.72
% students cheat on HS exam 33.00 2.17 19.50 Desserts/wk 3.85 2.92 4.04
Times checking phone/day 28.57 7.68 16.57 Loads of laundry/wk 3.42 2.70 3.75
Mins waiting on phone for customer service 20.21 3.88 13.29 % smokers 22.81 6.16 20.79
Times called parents/month 5.00 5.50 7.04 % HS students underage drink 35.81 13.71 32.96
Times clean home/month 5.78 4.35 6.24 % lie on dating website 50.56 13.40 47.20
Times computer crash/wk 3.07 0.12 1.14 Servings carbs/day 62.43 16.13 33.23
% HS dropouts 10.67 1.29 11.49 Txt msgs sent/day 27.18 12.88 18.10
% middle schoolers bullied 17.59 0.81 19.46 Times lose temper/wk 2.60 0.56 2.20
Hrs slept/night 6.69 7.84 7.32 Times swearing/day 8.69 5.88 11.26

(hours, calories, etc.), assumptions of normality were violated. To ad-
dress this problem, mean responses for each measure were converted to
log scale (after adding 1 to each number, to avoid taking the log of 0).

To examine how judgments of averages and ideals affect sampling
judgments, we compared a regression model in which only average
judgments predict sampling judgments to a model in which both
average and ideal judgments predict these judgments. The latter model
reveals that both judged averages, § = 0.77, SE = 0.05, p < .001, and
judged ideals, 8 = 0.19, SE = 0.05, p = .001, significantly predict
sampling judgments. Moreover, the Akaike Information Criterion (AIC)
for this model (3.03) is markedly lower than that for a model in which
only judged averages predict normality judgments (14.08), suggesting
that it is a more appropriate model of the observed data.”

We also conducted non-parametric analyses to explore whether the
means of people’s samples were intermediate between the mean of
judged averages and ideals. For a given sample amount to be inter-
mediate, it must be both on the ideal side of the average and the
average side of the ideal. For the 40 domains, 29 were on the ideal side
of average (binomial p = .006), and 37 were on the average side of
ideal (binomial p < .001). Further, 26 out of 40 of the mean samples
met both of these criteria — i.e., they were intermediate between
average and ideal judgments. Thus, although many sample amounts
were not intermediate, the proportion that were intermediate was
considerably greater than what would be expected by chance (binomial
p < .001 with a null hypothesis of 1/3, since there are two possible
ways that an item can be non-intermediate).*

Although the format of this study makes it difficult to qualitatively
assess the shape of the distributions of individual responses, the

2 As a robustness check, we also ran a regression where instead of taking the
log of average, ideal, and sample means reported in Table 1, we first took the
log of participants’ individual responses (+ 1), and then computed the means of
these log-transformed responses. In this new regression, judged averages,
B=0.79, SE =0.04, p < .001, and judged ideals, 8 =0.17, SE = 0.03,
p < .001, continue to significantly predict what comes to mind. Moreover, the
AIC is much lower for this model that includes ideal, compared to an average-
only model (AAIC = 18.87).

3 Given that several of these items have ideals that are essentially 0, which
makes it unlikely that mean samples would be on the non-average side of ideal,
we evaluate how many items are on the average side of ideal in a restricted set
of 30 items whose ideals are not obviously at floor. Within this set, 27/30 items
are on the average side of ideal (binomial p < .001), and 19/30 items have
mean samples that are intermediate between ideal and average (binomial
p < .001 for null of 1/3).

distributions of what comes to mind do not, at first appearance, seem to
be a simple linear combination of two distributions centered around
average and ideal judgments (Fig. 1S). We consider this question in
more rigorous detail in the studies that follow.

3. Experiment 2

Experiment 1 provided some initial evidence that what first comes
to mind is a blend of statistical and prescriptive information, but it was
limited in several ways. For example, it is possible that we unin-
tentionally selected real-world domains in which it happens to be the
case that the most salient quantities that come to mind are a blend of
what is common and what is desirable — even if this is not inevitable.
In addition, our analysis showing that both estimated averages and
judged ideals significantly predict what comes to mind could be ex-
plained by some unmeasured third variable that is correlated with the
two predictors of interest.

To alleviate these and other concerns, we moved to a more con-
trolled setting in Experiment 2, in which the entire distributions of
statistical and prescriptive information that participants were exposed
to were varied, so we could explore how these full distributions were
functionally combined to produce samples that came to mind.

3.1. Method

One thousand and two hundred participants from Amazon’s
Mechanical Turk were randomly assigned into one of six conditions in a
2 x 3 pre-registered design. (Previous pilot data collection suggested
that this would offer sufficient power to adequately distinguish our
computational models.) We orthogonally manipulated the statistical
distribution of quantities presented to participants (unimodal vs. bi-
modal) and the prescriptive goodness of those quantities (high ideal,
low ideal, intermediate ideal).

Participants were first presented with a description of the fictional
hobby of “flubbing”. In the low ideal condition, participants were told
that “although it is safe to flub for a few minutes every week, doctors
warn that there are serious health risks associated with flubbing for
longer periods of time.” The high ideal condition, in contrast, stated
that “doctors advise their patients to flub as much as possible” and that
the more people flub, the healthier they are. The intermediate ideal
condition stated that “doctors advise their patients to flub a moderate
amount each week.”

Participants were then told that they would be presented with
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Fig. 1. Mean samples (blue) and estimates of average amount of flubbing (orange) for the unimodal (left) and bimodal (right) conditions from Experiment 2. Also
shown are the true average amounts of flubbing presented (dashed black lines). Error bars are 95% CIs of the means. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

amounts of time (in minutes) that 100 people flubbed in the past week
(one at a time, on separate pages), along with health grades, ranging
from A+ to D—, that indicated the healthiness of flubbing for each of
these amounts of time.

Before continuing, participants were also asked two comprehension
questions: “Is it healthier for a person to flub for a long time or a
moderate amount of time?”, and “Is it healthier for a person to flub for a
short time or a moderate amount of time?”. Participants who answered
either of these questions incorrectly were excluded from data analysis.

Grades were calculated in the following way. In the high ideal
condition, all amounts of flubbing greater than 80 min were given an
A+, and all amounts less than 20 were given a D—. The opposite was
the case in the low ideal condition. Then, within the 20-80 range,
grades were spaced linearly in intervals of 5, such that 75-80 corre-
sponded to A+, 70-75 A, and so on for the high ideal condition, and
the reverse for the low ideal condition. In the intermediate ideal con-
dition, the most ideal amount of flubbing was set to 50, and quality of a
given amount of flubbing x was scaled linearly based on the absolute
distance from 50." Because x was constrained to the 0-100 range, the
grades in this condition were spaced in intervals of 4, rather than 5.
Thus, x amounts within 4 of 50 were given an A+ grade, amounts less
than 46 or greater than 54 were given an A grade, amounts less than 42
or greater than 58 were given an A— grade, and so on.

The amounts of flubbing were sampled from a normal distribution
with p = 45 and o = 15 in the unimodal condition and a sum of normal
distributions with p = 35 and 75, and o = 5, in the bimodal condition.
(Note that the modes were intentionally selected to be slightly off-
center from 50 so that we could observe interesting asymmetries that
would be uniquely predicted by our models.) These numbers were
rounded to the nearest integer. Within each of these conditions, all
participants were given the exact same 100 numbers (i.e., we only
sampled from these distributions once per condition), presented in a
different random order for each participant.

After viewing all 100 amounts of flubbing, participants were asked,
without forewarning, what was the first number of minutes of flubbing
that came to mind. As in Experiment 1, they were told that there was no

“To avoid overcomplicating the design for participants, we do not consider a
bimodal ideal condition in which it best to flub either very low or very high
amounts. However, it is an interesting direction for future research to consider
how people sample from more complex value functions such as this.

need to deliberate about this and that we were not looking for a par-
ticular correct answer. Participants were also asked afterwards what
they thought the average amount was.

3.2. Computational framework

We consider several models that combine statistical and prescriptive
information to produce a probability distribution of possible samples.
Importantly, these models capture a population-level distribution of
samples of what first comes to mind (what we measure in our experi-
ments), rather than a distribution of samples that a single individual
might make over time. In the models below, we use the notation P(x) to
refer to the statistical probability of observing x minutes of flubbing and
V(x) to refer to the prescriptive value of flubbing for that amount of
time. In our experiments, P(x) is specified by the generative unimodal
and bimodal PDFs that we sampled from (see above), and V(x) is
computed linearly based on the grades that participants were pre-
sented. In the low- and high- ideal conditions, the grades varied over
the range of 20-80 min (even though numbers could be presented from
0 to 100). Thus, there were 60 possible prescriptive values, with V
(x) =x —20 if 20 < x < 80 in the high-ideal condition, and V
(x) = 80 — x if 20 < x < 80 in the low-ideal condition. Values were
then capped at 0 or 60 for all x < 20 or > 80. In the intermediate-ideal
condition, V(x) =50 — |x — 50| for all x, such that V(0) =0, V
(100) = 0, and V(50) = 50.

The two simplest possible models assume that participants’ samples
are drawn proportional to either just the statistical probabilities P(x) or
just the prescriptive values V(x) that we presented. We call these two
models Statistics-Only (SO) and Value-Only (VO), where the prob-
abilities® of sampling a given x on each of these models is defined as

SO(x; C)=P(x) + C
and
VO(x; C)=V(x)+C

where C is a constant that accounts for uniform non-relevant factors
that contribute to sampling.

5 The equations presented here are not strictly probabilities or PDFs because
they are not normalized. For simplicity, we present the unnormalized equations
here.
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Next, we consider two simple ways in which statistical and pre-
scriptive information could be combined. First, as described in the
Introduction, both of these factors might independently influence what
quantities people are likely to sample, such that amounts that are more
common are more likely to be sampled, and amounts that are more
desirable are also more likely to be sampled, but the interaction be-
tween these two pieces of information does not play any role. In other
words, people default to sampling from either a statistical distribution or
a prescriptive distribution. According to this Additive model (Add), the
probability of sampling is a weighted sum of statistical and normative
factors:

Add(x; w, C) =wP(x) + 1 —w)V (x) + C.

Alternatively, samples may be proportional to the product of sta-
tistical probability and normative value, such that what comes to mind
are amounts of flubbing that are both common and good. In other
words, on this model, statistical and prescriptive information are not
independent factors that contribute to what comes to mind, but are
both necessary. We call this the Multiplicative (Mult) model:®

Mult(x; C) = P(x)V(x) + C.

Lastly, inspired by past work (Bear, Bensinger, Jara-Ettinger, &
Knobe, 2018), we consider a variant of the multiplicative model, which
exponentiates the prescriptive values. Given that prescriptive value is
useful for choice, and choice probabilities are often modeled by taking
the softmax transformation of prescriptive values (Luce, 1959;
McFadden, 1973; Sutton & Barto, 1998), this is a sensible way of con-
verting prescriptive values into choice probabilities. We call this the
Softmax (SM) model:

V(x)

SM(x;7,C)=P(x)e = +C

where 7 is a softmax temperature parameter that modulates the influ-
ence of V(x) relative to P(x). (Note that, as in the other models above,
the normalizing constant that is typically presented in the softmax
equation is omitted here; see footnote 5.) We predicted that this model
would best capture participants’ responses.

3.3. Results

In total, 1197 participants completed the experiment (deviating
slightly from our 1200 target), and 945 passed the comprehension
questions. All reported analyses were performed on only those parti-
cipants who passed comprehension.

We first compared participants’ mean sample judgments to their
mean estimates of the average amount of flubbing that they saw in the
100 numbers we presented. These means, for each of the two statistical
distributions, are presented in Fig. 1. As shown, although participants
did not perfectly estimate the true average amounts of flubbing in either
distribution (dashed black lines), these judgments were significantly
different from the mean sample judgments in the low ideal, paired t
(331) =11.98, p < .001, and high ideal, paired t(293) = 16.55,
p < .001, conditions. As expected, sample judgments and average es-
timates did not significantly diverge in the intermediate ideal condition,
t(318) = 0.085, p = .93. Thus, participants’ samples were pulled to-
wards prescriptively good amounts of flubbing.

Next, we fit each class of model described above to the data from the
six conditions using maximum likelihood estimation. This was

®In our online code available at OSF (see Preregistration and Code
Availability), we also explore a more flexible version of this model, which we
call MultLS. This more flexible model allows V(x) to be linearly transformed,
i.e., V(x) = aV(x) + b, where a and b are free parameters, and V’(x) = 0 for all
x. Model fits for this more flexible model end up being virtually identical to
those for the simpler model above. For further information about the results
from this model, see Supplementary Materials.
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implemented with MATLAB’s fmincon function. Parameters were esti-
mated separately for each condition.

As predicted, the softmax model outperformed all other models in
log likelihood, AIC, and BIC (see Supplement). Moreover, as shown in
Fig. 2, this model successfully captured much of the structure of the
distributions across all conditions, suggesting that it is a plausible
computational account of what spontaneously comes to people’s minds.

4. Experiment 3

Thus far, we have explored numerical quantities that come to mind.
But if softmax sampling is a general feature of the way that the mind
operates by default, similar principles should apply in an entirely dif-
ferent modality. In Experiment 3, we measure visual imagery that
comes to mind after people have been presented with images of a fic-
tional hunting tool in order to explore whether people sample in similar
ways in a completely non-numerical context.

4.1. Method

One thousand and eight hundred participants from Amazon’s
Mechanical Turk were randomly assigned into one of six conditions in a
2 X 3 pre-registered design. (Given the additional task demands of
manipulating a visual stimulus and the new exclusion criteria described
below, we increased our sample size from Experiment 2. Pilot data
suggested that this would offer enough power to distinguish our com-
putational models.) We orthogonally manipulated the statistical dis-
tribution of quantities presented to participants (unimodal vs. bimodal)
and the prescriptive values of those quantities (high ideal, low ideal,
intermediate ideal).

Participants were first presented with a description of a fictional
hunting tool called a “stagnar” (Bear & Knobe, 2017). In the low ideal
condition, participants were told that “shorter stagnars are better than
longer ones [for hunting] because they are easier to handle.” The high
ideal condition, in contrast, stated that “longer stagnars are better...
because they are able to inflict the most damage.” The intermediate
ideal condition stated that “stagnars of moderate length are better than
long or short ones because they are both small enough to handle and
large enough to inflict serious damage.”

Participants were then told that they would be presented with pic-
tures of 100 different stagnars of varying lengths (one at a time, on
separate pages), along with grades, ranging from A+ to D—, that in-
dicated how good the stagnars were for hunting.

Stagnars were presented on the screen with a width of 300 + 400x
pixels, where x corresponded to the minutes of flubbing used in
Experiment 2. (The heights of the stagnar images were scaled pro-
portionally to the original image.) Grades were also the exact same as
those used in Experiment 2.

After reading the instructions, participants were asked a compre-
hension question: “The best stagnars are of what length?”, which could
be answered with “Short Length,” “Moderate Length,” or “Long
Length.” They were also asked to complete two screen calibrations,
where they used a slider to adjust the length of a stagnar image to
match the length of another image on the screen, which was either
400px or 600px wide.

After seeing the 100 stimuli, participants were asked to “imagine
the first stagnar that comes to mind.” We emphasized that they did not
need to deliberate about this and that we were not looking for a specific
“correct answer.” Once the participants felt they had this image in
mind, they advanced to a page where they could adjust an image of a
stagnar with a slider to the image they were imagining. This slider had
no markings on it, and could be dragged to create any length between
300px and 700px (corresponding to the limits of 0 and 100 min in
Experiment 2) in increments of 4px. Afterwards, participants were
asked to use the same slider to create the average length they saw from
the 100 stimuli.
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Fig. 2. Distributions and model fits for sample amounts of minutes from Experiment 2. Vertical bars show proportion of amounts sampled by participants, and black
lines show softmax models with best fitting parameters for each condition. Also shown in gray are the generative statistical distributions (unimodal or bimodal) of

amounts of flubbing.

4.2. Results

People who failed the comprehension question or were off by 20px
in either direction for either screen calibration were excluded from data
analysis. Participants who indicated that they had trouble with the
slider or used a mobile device for the study were also excluded. In the
end, 1129 participants passed these stringent requirements for analysis.

As in Experiment 2, we first compared participants’ mean sample
judgments (the stagnar length that came to mind) to their mean esti-
mates of the average stagnar length that they saw in the 100 images we
presented. These means, for each of the two statistical distributions, are
presented in Fig. 3. As shown, although participants did not perfectly
estimate the true average lengths in either distribution (dashed black
lines), these judgments were significantly different from the mean
sample judgments in the low ideal, paired t(347) = 10.91, p < .001,
and high ideal, paired t(390) = 20.77, p < .001, conditions. As ex-
pected, sample judgments and average estimates did not significantly
diverge in the intermediate ideal condition, t(389) = 1.15, p = .250.

Next, as in Experiment 2, we fit each class of model described above
to the data from the six conditions using maximum likelihood

estimation. This was implemented with MATLAB’s fmincon function in
the same way as in Experiment 2. Parameters were estimated separately
for each condition.

As predicted, the softmax model outperformed all other models in
log likelihood, AIC, and BIC (see Supplement). Moreover, as shown in
Fig. 4, this model successfully captured much of the structure of the
distributions across all conditions, suggesting that it is a plausible
computational account of what spontaneously comes to people’s minds.

5. General discussion

Our findings suggest that what first comes to mind, in the absence of
an explicit goal, is a compromise between what is statistically probable
and what is valuable. Experiment 1 demonstrated this across a number
of real-world domains, while Experiments 2 and 3 provided quantita-
tive support that people sample thoughts to mind from a probability
distribution that combines information from these two dimensions of
frequency and value.

These experiments rule out the hypothesis that what comes to mind by
default is simply a mixture of what would come to mind during two
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Fig. 3. Mean samples (blue) and estimates of average stagnar length (orange) for the unimodal (left) and bimodal (right) conditions from Experiment 3. (Note that all
lengths are scaled to the 0-100 range, where 0 corresponds to 300px and 100 corresponds to 700px.) Also shown are the true average lengths of stagnars presented
(dashed black lines). Error bars are 95% CIs of the means. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

important kinds of tasks: prediction and decision-making. At the same time,
the default probability distribution that people do appear to sample from is
closely related to those distributions involved in prediction and choice.
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Specifically, the default probability distribution in our best fitting model is
the mathematical product of a distribution that could be used for prediction,
P(x), and a distribution that could be used for choice, softmax of V(x).
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Fig. 4. Distributions and model fits for sample stagnar lengths from Experiment 4. (Note that all lengths are scaled to the 0-100 range, where 0 corresponds to 300px
and 100 corresponds to 700px.) Vertical bars show proportion of amounts sampled by participants, and black lines show softmax models with best fitting parameters
for each condition. Also shown in gray are the generative statistical distributions (unimodal or bimodal) of lengths presented. For comparison, we use the same y-axis

as Fig. 2.
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5.1. Conceptions of value

The present studies suggest that the probability of being sampled is
impacted in some way by representations of prescriptive value.
However, existing research has distinguished a number of different
conceptions of value, and one might ask which of these conceptions is
actually at work in these phenomena.

To begin with, people can represent either an object's expected
value (i.e., a probability-weighted sum of the goodness values of many
possible situations) or its value in and of itself. These might then come
apart in some cases. For example, fancy food tends to be expensive and
might therefore be represented as having low expected value, but all
the same, it might be represented as having high value in and of itself.

Second, people can represent either the degree to which an object is
valuable in general or the degree to which it is valuable given the goals
they have right at the moment. For example, a person might think that
steak dinners are generally very good, but if she happens not to be
hungry, she might not value having one right now.

Finally, as Barsalou (1985) has emphasized, people often represent
categories in terms of some distinctive ideal. People associate knives
with the ideal of cutting well, teachers with the ideal of teaching well,
and so forth. Here again, the result is that we may sometimes arrive at
two distinct notions of value. Thus, in thinking about burglars, people
might feel that there is some straightforward sense in which the best
sort of burglar is one who hardly ever steals anything, but people might
also have a Barsalou-style representation according to which there is
some sense in which a ‘good burglar’ is one who burgles especially well.

Future research could explore the question as to which of these
many different conceptions of value is actually impacting the prob-
ability that a given possibility will be sampled.

5.2. Relation to previous work on sampling

Within existing research, there has been a great deal of important
work on the ways in which people use sampling to accomplish one or
another specific task, including decision-making, judgment, prediction,
and a variety of others (e.g., Fiedler, 2000; Frydman & Lawrence, 2019;
Stewart, Chater, & Brown, 2006). Normative models have also been
developed to explain how agents should sample in various contexts
(e.g., Callaway & Griffiths, 2019; Icard, Cushman, & Knobe, 2018;
Lieder et al., 2018). A question arises as to how the methods of sam-
pling explored in this past work might relate to the kind of default
sampling that we have explored here.

While past work has focused on task-specific sampling, we consider
what comes to mind in the absence of any explicit task. Thus, it is
possible that the kind of sampling people do without an explicit goal is
simply distinct from other types of sampling that have been considered
in the literature. Nevertheless, it is also possible that the default sam-
pling distribution we have uncovered might subtly influence other
types of sampling. For example, perhaps even when people are trying to
sample options only proportional to their reward value in order to make
the best decision possible, they are biased to think about options that
are statistically probable (even if these options are not desirable). Or,
conversely, perhaps when people are trying to make a merely prob-
abilistic judgment or prediction, their samples are swayed by pre-
scriptive value. We hope to explore these connections between what
comes to mind by default and what comes to mind in task-specific
settings in follow-up work.

While distinct in many ways, two lines of past research seem par-
ticularly noteworthy in relation to the present findings. First, Lieder
et al. (2018) have developed a model of utility-weighted sampling, in-
spired by the mathematical technique of importance sampling. According
to their model, when people consider possible future outcomes, they
oversample outcomes that would have a large impact on their utili-
ty—either positive or negative—relative to equally probable outcomes
that have a smaller impact on utility. Utility-weighted sampling is
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advantageous when one must estimate the expected value of an event
by sampling its consequences. This specific context was not, however,
the focus of our experiments. Rather, we queried the form of sampling
that occurs in the absence of any particular task. And, in this context,
we find clear evidence for an oversampling of high values, but no
corresponding evidence for an overweighting of low values. This
highlights two important questions for further study. First, what are the
contexts in which people oversample both high and low values (con-
sistent with utility-weighted sampling), and what are the contexts in
which they selectively oversample high values (consistent with our
findings)? Second, what are the distinct functions that favor one or the
other approach in different contexts? As we have emphasized, our
principle contribution is to demonstrate the striking structure endemic
to “default” sampling, but considerable uncertainty about its ultimate
function remains.

A second line of research has explored the role of sampling in
memory recall. Given that we can only recall a limited number of ex-
periences at a time, what factors should determine the specific mem-
ories that come to mind? In the context of spatial navigation, Mattar
and Daw (2018) show that an optimal agent will recall past experiences
that are high on two dimensions — gain and need. Gain roughly cor-
responds to the value that the memory would provide the agent for
acquiring future rewards in the situation that is recalled, while need
represents the probability that the agent will encounter this remembered
situation in the future. Similar to the present results, the authors find
that an optimal agent should recall memories that maximize the product
of these two factors. That is, the most useful experiences to call to mind
are those that are both instructive for generating reward and likely to
be encountered in the future. In contrast, it is not useful to ruminate on
past situations that are highly instructive, but unlikely to be en-
countered in the future, nor is it useful to recall past experiences that
are likely to be encountered in the future, but have already been op-
timized for reward.

In the context of our tasks, it is unlikely that participants are lit-
erally sampling from episodic memories of past events. We find this
unlikely because, for instance, the specific amounts of “flubbing” that
come to mind in Experiment 2 were often quantities that were never
presented during training. Nevertheless, it is intriguing that the basic
motif of a product of statistical and value information arises in both
these contexts. This may indicate a common functional design, even if it
does not indicate a common mental or neural mechanism.

5.3. Default sampling and adaptiveness

Why might the brain sample by default from a distribution shaped
by both probabilistic and prescriptive considerations? One obvious
hypothesis would be that there is something adaptive about this ap-
proach to default sampling. We briefly consider two possible explana-
tions along these lines.

First, one obvious potential function of sampling from a combina-
tion of these two distributions by default is that what comes to mind
could aid in both a future prediction and a future decision. For example,
two hours of television watching in a day might be a reasonable ex-
pectation of what another person might do and also be a reasonable
target to watch for oneself. This amount could therefore serve as a
useful anchor point for either of these two very different goals, as they
might arise. By analogy, if you are unsure whether your friend prefers
to eat meat or fish on any given night, you might default to choosing
“surf & turf” for them, which would be a highly-valued option in either
event. Biasing towards “compromise” dishes of this kind may be more
adaptive than sampling from a mixture of pure-meat and pure-fish
dishes.

A different kind of account might not explain the distributions we
observe in terms of a compromise, but instead provide a more unified
explanation for the adaptiveness of combining both of these features
into a hybrid probability distribution. To see how this might work, we
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offer a specific, illustrative example of the general kind. Specifically, it
is possible that the default representation we identified is actually quite
tailored to the task of predicting the outcome of a choice process across
variable environments. Often, we cannot consider every possible choice
we could make in a given context, but rather must choose among a set
of feasible options (Phillips, Morris, & Cushman, in press). For instance,
for a variety of reasons (work, family, roommates, etc.) we may not be
able to watch our preferred amount of TV every day. Thus, the feasible
options on any given day will be a subset of the full range of 0-24
hours. In this case the set of feasible options is drawn from a statistical
probability distribution, while choice among the set of feasible options is
dictated by a prescriptive value function, converted to a choice prob-
ability distribution via softmax. The actual amount of TV that we are
likely to choose, then, will be dictated by the product of these two
distributions. Put simply, what we are likely to end up with on any
given day is the product of the specific options we are likely to have
(governed by descriptive probabilities) and our preference among that
set of options (governed by value). What comes to mind by default,
then, may be drawn from the distribution of things that are likely to be
obtained, given both extrinsic feasibility constraints and personal pre-
ferences. This distribution could function as a useful baseline approx-
imation of the average quality of goods or events that are obtainable in
one’s environment.

6. Conclusion

Although the ultimate functional explanation for people’s default
sampling tendencies remains uncertain, the present work offers a first
step in describing the informational and computational factors that
contribute to a largely unexplored psychological phenomenon:
thoughts entering conscious awareness by default. Our results suggest
that these thoughts are not simply a recapitulation of thoughts that
would arise in other contexts, but are an interesting topic of study in
their own right. Further work should continue to explore the nature of
this blending and its role in downstream cognitive processes.

7. Preregistration and code availability

Experiment 1 was not formally preregistered; the preregistration for
Experiment 2 can be accessed at http://aspredicted.org/blind.php?x =
3bc27u, and the preregistration for Experiment 3 can be accessed at
http://aspredicted.org/blind.php?x =ie74cf. De-identified data for all
experiments along with a code-book and the data analysis scripts are
posted on OSF at https://osf.io/2dzmf/?view_only =
38c4c755930d4d89bceddc218fed21ad. The materials used in these
studies may be requested at any time.
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