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Abstract 
People can consciously think about only a few things at a 
time. But what determines the kind of things that come to 
mind, among a potentially infinite set of possibilities? Two 
experiments explored whether the things that come to mind 
are sampled from a probability distribution that combines 
what people think is statistically likely and what they think is 
prescriptively good. Experiment 1 found that when people are 
asked about the first quantities that come to mind for 
everyday behaviors and events (e.g., hours of TV that a 
person could watch in a day), they think of values that are 
proportional to, and intermediate between, what they think is 
average and what they think is ideal. Experiment 2 
quantitatively manipulated distributions of times people 
devoted to engaging in a novel hobby (“flubbing”) and the 
corresponding distributions of goodness of doing this hobby 
for various amounts of time. The distribution of values that 
came to mind resembled the mathematical product of the 
statistical and prescriptive distributions we presented 
participants, suggesting that something must be both common 
and good to enter conscious awareness. These results provide 
insight into the algorithmic process generating people’s 
conscious thoughts and invite new questions about the 
adaptive value of thinking about things that are both common 
and good. 
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Introduction 
Think of an amount of TV that a person could watch in a 

day. You might think of one hour, two hours, perhaps even 
five or six hours. There are no right or wrong answers to 
this question — it is just a matter of which amount first 
comes to mind.  

This exercise is a contrived example of a computation that 
the mind performs all the time: selecting samples out of a 
broad array of possibilities. There are infinitely many 
possible amounts of TV a person could think about at any 
given time, but clearly, some amounts are much more likely 
to come to mind than others. For example, a person will be 
much more likely to think of three hours than 17.5 hours. 

Existing research has explored the ways in which people 
use sampling algorithms to complete specific aims, such as 
prediction and decision-making (Stewart, Chater, & Brown, 
2006; Vul & Pashler, 2008; Vul, Goodman, Griffiths, & 
Tenenbaum, 2014). Importantly, however, people also have 
a capacity to select samples in cases in which they are not 
explicitly aiming at achieving a specific goal. Even in the 
absence of a well-defined goal, certain possibilities naturally 
come to mind while others do not. 

 

In cases of this type, what determines the values that 
come to mind? One obvious hypothesis would be that the 
distribution of the amounts that enter people’s conscious 
awareness should mirror people's perception of the 
corresponding statistical frequencies in the population. On 
this hypothesis, people should have a high probability of 
thinking of the amounts they perceive as frequent, and a low 
probability of thinking of the amounts they perceive as 
infrequent. The mean of the amounts that came to mind 
would then converge to the amount people regarded as the 
actual population mean. 

But there is also another factor that might play a role here. 
In the context of decision-making, it is often helpful to be 
guided by prescriptive considerations. In other words, when 
other things are equal, it is often helpful for people to have a 
high probability of thinking of options they perceive to be 
genuinely good, and a low probability of considering 
options they perceive to be bad. 

These two kinds of considerations — statistical and 
prescriptive — may at first seem to be almost entirely 
unrelated. However, recent research suggests that there is 
actually a close connection between the two. People appear 
to be capable of using a single, undifferentiated 
representation that mixes together the statistical and the 
prescriptive (Bear & Knobe, 2017; Icard, Kominsky, & 
Knobe, 2017; Phillips & Cushman, 2017; Wysocki, 2018). 
For example, when participants are asked whether a given 
amount is ‘normal,' their answers are influenced both by 
statistical judgments and by prescriptive judgments. The 
perceived 'normal amount of TV to watch in a day' is 
therefore intermediate between the perceived average and 
the perceived ideal (Bear & Knobe, 2017).  Similar results 
have been obtained across numerous other domains 
(Wysocki, 2018). 

The present paper tests the hypothesis that the distribution 
of the amounts that enter people's conscious awareness 
shows this same mix of statistical and prescriptive 
considerations. On this hypothesis, people are sampling 
from a distribution that is shaped both by perceived 
frequency and by perceived goodness. 

We consider three basic types of models. First, the 
probability of thinking of a given possibility might be 
determined (i) entirely by statistical considerations. 
Alternatively, it might also be determined by prescriptive 
considerations. If it is determined by both, it might be that 
(ii) these two kinds of considerations affect the probability 
of considering the possibility in a purely additive way (i.e., 
both considerations independently make things more likely 
to enter conscious awareness); or (iii) the two kinds of 



considerations actually interact in determining the 
probability of thinking of a possibility. Specifically, the kind 
of things that most readily come to mind may be things that 
are both statistically likely and prescriptively good, and that 
neither one of these properties is, on its own, sufficient to 
bring something to mind.  

We explored this question both in a relatively naturalistic 
setting (Experiment 1) and in an artificial setting in which 
we could more precisely model people's responses 
(Experiment 2). We found support for model (iii) from 
above: what comes to mind is an interaction of what people 
think is likely and what people think is good. 

Experiment 1 
In this experiment, we examined how people’s intuitions 
about average and ideal amounts of various ordinary 
behaviors or events relate to what values spontaneously 
come to mind. We developed a list of 40 such behaviors or 
events, 20 of which were borrowed from a similar design 
from Bear & Knobe (2017). We hypothesized that the 
values that come to mind would be influenced not only by 
what was considered average, but also what was considered 
ideal. 

Method 
The study proceeded in two parts on Amazon’s Mechanical 
Turk. One set of 100 participants was randomly assigned to 
judge either the average or ideal value of a set of 20 
randomly chosen behaviors or activities, which were 
randomly selected from the total set of 40. These 20 items 
were presented in random order to participants. Thus, for 20 
of the 40 domains, approximately 50 participants were 
asked to fill in values like “Average number of hours of TV 
that a person watches in a day”, and approximately 50 other 
participants were asked to fill in values like “Ideal number 
of hours of TV for a person to watch in a day”. To avoid 
demand characteristics, participants were only always asked 
about either averages or ideals, never both in the same 
session. 

A separate group of 100 subjects participated in the 
sampling part of the experiment, in which they gave values 
that first came to mind. Participants were instructed to 
simply “enter the first number that comes to mind” when 
reading the presented phrase, and it was emphasized that 
there was no “correct” answer. In order to encourage 
participants to give a spontaneous judgment, we instructed 
them to try to give each response in under 5 seconds. 
However, responses were still solicited after this time delay. 
After completing two practice trials, the participants were 
presented with a random 20 out of 40 domains, presented in 
random order. Each page simply displayed a phrase like 
“NUMBER OF HOURS OF TV FOR A PERSON TO 
WATCH IN A DAY” and a timer counting down from 5 
seconds, along with a box for subjects to give their 
response. 

Results 
Participants’ responses in each condition were averaged for 
each of our 40 domains (Table 1). Responses from 
participants who failed an attention check or that were 3 
standard deviations away from the mean answer for a given 
question were excluded.  

Since our questions asked about very different kinds of 
quantities (hours, calories, etc.), assumptions of normality 
were violated. To address this problem, mean responses for 
each measure were converted to log scale.   

To examine how judgments of averages and ideals affect 
sampling judgments, we compared a regression model in 
which only average judgments predict sampling judgments 
to a model in which both average and ideal judgments 
predict these judgments. The latter model reveals that both 
judged averages, b = .77, SE = .05, p < .001, and judged 
ideals, b = .18, SE = .04, p < .001, significantly predict 
sampling judgments. Moreover, the corrected Akaike 
Information Criterion (AICc) for this model (17.75) is 
markedly lower than that for a model in which only judged 
averages predict normality judgments (30.88), suggesting 
that it is a more appropriate model of the observed data. 
Following Wagenmakers & Farrell (2004), the strength of 
evidence in favor of the more complex model can be 
quantified with an evidence ratio. This ratio was 709, 
indicating a highly favorable fit for the model that includes 
ideal judgments as a predictor. 

We also conducted non-parametric analyses to explore 
whether people’s samples were intermediate between 
judged averages and ideals. For a given sample to be 
intermediate, it must be both on the ideal side of the average 
and the average side of the ideal. For the 40 domains, 29 
were on the ideal side of average (binomial p = .006), and 
37 were on the average side of ideal (binomial p < .001). 
Further, 26 out of 40 of the sample values met both of these 
criteria — i.e., they were intermediate between average and 
ideal judgments. Thus, although many sample values were 
not intermediate, the proportion that were intermediate was 
considerably greater than what would be expected by 
chance (binomial p < .001 with a null hypothesis of 1/3, 
since there are two possible ways that an item can be non-
intermediate).  

Discussion 
In this experiment, the values that spontaneously came to 

people’s minds, like hours of television watching, were best 
explained by considering both statistical reasoning (what is 
considered average) and prescriptive judgments (what is 
considered ideal). However, this result does not tell us about 
the computational process that generated these judgments. 
In the next experiment, we explore this question in more 
detail. 

Experiment 2 
Experiment 1 found that what comes to mind depends on 
both statistical and prescriptive kinds of information. But 
because people’s statistical and prescriptive beliefs were 



collapsed into single judgments of average and ideal, 
respectively, we could not get a detailed understanding of 
how this information was being used to produce people’s 
sample judgments.  

In Experiment 2, we moved away from simple point 
values of “average” and “ideal” to a more controlled setting, 
in which the entire distributions of statistical and 
prescriptive information that participants were exposed to 
were varied, so we could explore how these full 
distributions were functionally combined to produce 
samples that came to mind. In particular, we could compare 
models in which the samples were a function of a weighted 
sum of statistical frequency and prescriptive goodness to 
models in which the samples were a function of the product 
of these two types of information. 

Method 
Four-hundred participants from Amazon’s Mechanical Turk 
were randomly assigned into one of four conditions in a 2 x 
2 design. We orthogonally manipulated the statistical 
distribution of values presented to participants (unimodal vs. 
bimodal) and whether our fictional hobby was healthy or 
unhealthy (high ideal vs. low ideal).  

Participants were first presented with a description of the 
fictional hobby of “flubbing”. In the low ideal condition, 
participants were told that “although it is safe to flub for a 
few minutes every week, doctors warn that there are serious 
health risks associated with flubbing for longer periods of 
time.” The high ideal condition, in contrast, stated that 
“doctors advise their patients to flub as much as possible” 
and that the more people flub, the healthier they are. 

Participants were then told that they would be presented 
with amounts of time (in minutes) that 100 people flubbed 
in the past week (one at a time, on separate pages), along 
with health grades, ranging from A+ to D-, that indicated 
the healthiness of flubbing for each of these amounts of 
time.  

Grades were calculated in the following way. In the high 
ideal condition, all amounts of flubbing greater than 80 
minutes were given an A+, and all amounts less than 20 
were given a D-. The opposite was the case in the low ideal 
condition. Then, within the 20–80 range, grades were 
spaced linearly in intervals of 5, such that 75–80 
corresponded to A+, 70–75 A-, and so on for the high ideal 
condition, and the reverse for the low ideal condition. 

The amounts of flubbing were sampled from a normal 
distribution with µ = 45 and σ = 15 in the unimodal 
condition and a sum of normal distributions with µ = 35 and 
75, and σ = 5, in the bimodal condition. These values were 
rounded to the nearest integer. Within each of these 
conditions, all participants were given the exact same 100 
values (i.e., we only sampled from these distributions once 
per condition), presented in a different random order for 
each participant.   

After viewing all 100 values of flubbing, participants 
were asked, without forewarning, what was the first number 
of minutes of flubbing that came to mind. As in Experiment 

1, they were told that there was no need to deliberate about 
this and that we were not looking for a particular correct 
answer. Participants were also asked afterwards what they 
thought the average amount was.  

Computational Framework 
To investigate how prescriptive information influences 

participants’ sample judgments, we consider several models 
that combine statistical and prescriptive information to 
produce a probability distribution of possible samples. On a 
simple account, people might simply draw samples from the 
statistical distribution that generated the data, ignoring 
information about goodness. Thus, participants’ samples 
may be guided by 

 
Control(x;C) = Stat(x) + C, (1) 

 
where C is constant term to account for any uniform 
baseline probability of sampling. In contrast, there are 
several ways in which prescriptive information could 
combine with statistical information to play a role in 
predicting what comes to mind. (To save space, we ignore 
the obviously false model in which only prescriptive 
considerations influence samples.)  

We focus on two sets of possible models. First, what 
comes to mind may be a weighted combination, or sum, of 
statistical and prescriptive information, such that amounts 
that are more common are more likely to be sampled, and 
amounts that are more desirable are also more likely to be 
sampled, but the interaction between these two pieces of 
information does not play any role. In other words, 
statistical frequency and normative goodness may simply be 
two independent factors that contribute to a value’s 
probability of coming to mind. If so, then participants’ 
judgments should follow a distribution of the form 

 
Add(x;c,b,w1,w2,C) = w1*Stat(x) + w2*Ideal(x;c,b) + 

C, 
(2) 

 
where w1 and w2 are weighting parameters. 

Alternatively, values may only (or primarily) come to 
mind when they are both statistically frequent and 
normatively good. That is, the probability of sampling may 
be proportional to the product of frequency and goodness. If 
so, participant judgments should follow a distribution fit by 

 
Mult(x;c,b,C) = Stat(x)*Ideal(x;c,b) + C. (3) 

 
In the additive and multiplicative models (Eqs 2 and 3, 

respectively), we consider two potentially relevant factors in 
mapping the letter grades we presented participants to the 
Ideal function: baseline goodness (parameter b) and 
convexity (parameter c). At baseline, bad amounts of 
flubbing (e.g., 10 minutes in the high ideal condition) might 
be given an ideal value of 0 or might be given a value that is 
only slightly worse than good amounts of flubbing (e.g., 90 
minutes in the high ideal condition). The baseline goodness 



parameter, therefore, tracks how bad people think it is to 
flub an amount that deviates greatly from the highest 
possible grade. 

The convexity of the function tracks the relative drop-off 
in goodness as values move away from the highest possible 
grade. For example, people may think that a B grade is 
much worse than an A grade, but a D grade is only slightly 
worse than a C grade, indicating a highly convex function. 
In contrast, convexity of 0 would correspond to a 
completely linear function, in which the difference in 
goodness between A and B is the same as that between C 
and D. (We ignore the possibility of concavity here, as our 
data strongly suggests that goodness takes a convex form.)  

Putting this all together and assuming that goodness 
cannot get higher than 1, we model goodness in the high 
ideal condition as 

 
Ideal(x;c,b) = ec(x–80) + b 

 
(4) 

when x < 80 and 1 otherwise. The low ideal condition 
simply flips the function, such that x – 80 becomes 20 – x 
for values of x > 20, with Ideal(x) = 1 when x < 20. 

Results 
We first explored whether participants’ sample judgments 
of what comes to mind were influenced by the goodness of 
the hobby (i.e., whether it was healthy or unhealthy). This 
was confirmed: participants’ samples averaged 33.78 across 
low ideal conditions and 60.47 across high ideal conditions, 
t(394) = 15.13, p < .001. (Note that a few observations were 
lost by participants who did not give numerical responses to 
our sample question, explaining the 4 missing observations.)  
Moreover, these judgments deviated significantly more in 
the direction of the ideal than participants’ estimations of 
the average amount of flubbing they saw: judgments of 
average were 40.77 and 49.48 in the low and high ideal 
conditions, respectively (t(198) = 5.93, p < .001 and t(195) 
= 4.83, p < .001 comparing average and sample judgments 
in each condition).  

Next, we fit each class of model to our observed data 
using maximum likelihood estimation, implemented with 
MATLAB’s fmincon function. All parameters were 
constrained to be between 0 and 1, and all models fit to the 
entire dataset (i.e., one set of parameters were fit to all 
conditions together). 

Despite the additive model’s two extra free parameters, 
the multiplicative model outperformed it: the best-fitting 
multiplicative model had a negative log likelihood (NLL) of 
1,567, while the best-fitting additive model had a NLL of 
1,642. Moreover, a comparison of AIC values suggests that 
the multiplicative model is definitively more likely to 
minimize information loss (evidence ratio > 1032). As 
expected, the control model performed much worse than 
both of these models, with a NLL of 1,674, and had a much 
worse AIC than the best-fitting multiplicative model 
(evidence ratio in favor of multiplicative model > 1044).  

 Figure 1 presents histograms of the sample values across 
the four conditions, along with model fits (black lines) from 
the best-fitting multiplicative model, with c = 0.084, b = 
0.047, and C = 0.0005. The green lines indicate the ideal 
function for each of these conditions with the fitted 
parameters, and the gray lines displays the statistical 
distributions. It is clear from visual inspection that the 
multiplicative model does a fairly good job of characterizing 
participants’ sample judgments, particularly in the bimodal 
conditions. In the unimodal conditions, it spreads out the 
probability mass across less ideal values slightly more than 
observed, but still captures the general shape. 
 

 
  

Figure 1: Data and model fits from Experiment 2. Vertical 
bars show proportion of values sampled by participants. 
Gray and green lines show the statistical information and 

prescriptive information (fit through Eq. 4) that participants 
saw, and the black lines show the predictions of the best 

multiplicative model (Eq. 3). 

Control Experiment 
Experiment 2 confirmed that the normative information 
presented to participants strongly influenced what came to 
mind. However, it is possible that any information that we 
would give to participants other than statistical frequency 
could have a similar effect. If so, our data would not provide 
evidence that goodness, in particular, exerts an influence on 
sample judgments, but just any extraneous information. 

To address this worry, we conducted a (N = 101) follow-
up experiment on Mechanical Turk, based on the 
distribution and ideal values from the unimodal, low ideal 
condition above. In the experimental condition, participants 
were told (as above) that too much flubbing was bad for 
their health. However, instead of presenting health grades, 
we presented descriptions of “Very Good,” “Somewhat 
Good,” “Somewhat Bad,” and “Very Bad” to indicate the 
healthiness of the flubbing amounts, which corresponded to 
grades in A-range, B-range, C-range, and D-range, 
respectively.  
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In the control condition, we instead told participants that 
flubbing is a hobby that people “like to do at various 
altitudes” and that people tend to flub for longer amounts of 
time at lower altitudes, but the altitudes do not influence 
how enjoyable flubbing is. Then, using the same values 
from the other condition, we presented participants with 
descriptions of the altitudes at which different people 
flubbed (“Very High,” “Somewhat High,” “Somewhat 
Low,” and “Very Low”), which corresponded exactly to the 
mapping of labels from the other condition. 

Our results confirmed that the prescriptive information 
from the experimental condition exerted a larger influence 
on people’s sample judgments (µ = 34.59) than the 
irrelevant altitude information (µ = 41.16), t(99) = 2.11, p = 
.038, suggesting that prescriptive information plays a 
specific role in biasing what comes to mind. Moreover, 
participants’ sample judgments in the altitude condition 
were not significantly different from their judgments of the 
average (µ = 45.06), t(49) = 1.43, p = .160. 

Discussion 
In this experiment, we manipulated the distributions of 
statistical and prescriptive information we presented to 
participants to more quantitatively measure the extent to 
which this information influences what comes to people’s 
minds. Consistent with Experiment 1, we found that 
goodness exerts a strong influence on people’s sample 
judgments — and this is not true for other irrelevant 
information. More importantly, we found that people 
sample proportional to the product of statistical frequency 
and prescriptive goodness, suggesting that, in general, 
something needs to be both common and desirable for it to 
come to mind. 

General Discussion 
Two experiments found that the possibilities that 
spontaneously enter people’s minds are a mixture of what is 
thought to be likely and what is thought to be ideal. These 
results provide direct support for past work that has 
indirectly suggested such an influence of prescriptive 
considerations on the possibilities that people consider 
(Bear & Knobe, 2017; Icard et al., 2017; Phillips & 
Cushman, 2017; Wysocki, 2018). Moreover, Experiment 2 
provided novel support for a computational account of how 
the mind combines statistical and prescriptive 
considerations to produce the quantities that enter conscious 
awareness: frequency and goodness seem to be multiplied. 

A key question for further research will be why people 
sample possibilities from a distribution that is shaped in this 
way by both statistical and prescriptive considerations. In 
answering this question, one strategy would be to posit one 
reason why it would be adaptive for people to think about 
possibilities that arise frequently and then another, 
completely unrelated reason why it would be adaptive for 
people to think about possibilities they regard as good. For 
example, perhaps it is adaptive for people to think about 
actions that are performed frequently because people are 

likely to find themselves in situations in which someone 
else is performing one of those actions. Then, unrelatedly, 
perhaps it is adaptive for people to think about actions they 
regard as good because they will need to consider those 
actions in their own planning or deliberation. This type of 
hypothesis is certainly a plausible one, but it faces at least 
some difficulty in explaining why people specifically tend 
to think about possibilities that are both frequent and good.  

A second strategy would be to develop a more unified 
account that explains why it might be adaptive to think 
about possibilities in this hybrid way. For example, of all of 
the infinitely many things you might choose to do in your 
life, which would be worthy of further conscious 
consideration this afternoon? Given that you could not 
feasibly consider all candidate actions, a useful heuristic 
might be to consider, from among the reasonably common 
actions, those that seem relatively good. Thus, one would 
not consider options that are extremely infrequent (e.g., 
traveling to the moon) or options that seem extremely bad 
(e.g., robbing a bank) but only options that seem to be both 
reasonably frequent and also relatively good. On this 
hypothesis, statistical and prescriptive considerations are 
relevant for the same reason, namely, that they help in 
identifying options that might be worth considering in 
deliberation. 

In sum, the present work offers a first step in describing 
the informational and computational factors that contribute 
to a largely unexplored psychological phenomenon: 
thoughts entering conscious awareness. The results suggest 
that this process involves a surprisingly systematic blend of 
statistical and prescriptive considerations. Further work 
should continue to explore the nature of this blending and its 
role in downstream cognitive processes. 
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Table 1: Mean Average (A), Ideal (I), and Sample (S) Judgments across Domains from Experiment 1 

        
Domain A I S Domain A I S 

Hours TV/day 3.38 1.63 2.87 Drinks frat bro 
consumes/wkend 11.12 6.63 15.64 

Sugary drinks/wk 9.17 2.41 5.91 Times honk at 
drivers/wk 2.67 0.72 2.53 

Hours 
Exercise/wk 4.00 5.58 6.33 Mins on social 

media/day 60.57 35.40 59.10 

Cals 
consumed/day 2225.91 1900.00 1859.24 

Times parent 
punishes 
child/month 

6.58 2.28 3.25 

Servings fruits & 
veggies/month 40.00 94.96 39.16 Miles walked/wk 9.79 12.96 9.96 

Lies told/wk 9.57 1.17 8.44 % people drive 
drunk 11.30 1.23 9.45 

Mins late for 
appointment 14.22 3.04 13.60 Times cheat on 

partner in life 1.52 0.00 1.73 

Books read/yr 7.22 17.40 8.45 Times snooze 
alarm/day 2.13 0.76 1.98 

Romantic 
partners in life 6.09 5.77 8.06 Parking tickets/yr 1.67 0.04 1.37 

Country’s 
international 
conflicts/decade 

11.67 1.36 4.15 Times car 
wash/yr 10.77 12.85 11.31 

$ cheated on 
taxes 437.45 82.00 350.32 Cups coffee/day 2.21 1.84 2.72 

% students cheat 
on HS exam 33.00 2.17 19.50 Desserts/wk 3.85 2.92 4.04 

Times checking 
phone/day 28.57 7.68 16.57 Loads of 

laundry/wk 3.42 2.70 3.75 

Mins waiting on 
phone for 
customer service 

20.21 3.88 13.29 % smokers 22.81 6.16 20.79 

Times called 
parents/month 5.00 5.50 7.04 % HS students 

underage drink 35.81 13.71 32.96 

Times clean 
home/month 5.78 4.35 6.24 % lie on dating 

website 50.56 13.40 47.20 

Times computer 
crash/wk 3.07 0.12 1.14 Servings 

carbs/day 62.43 16.13 33.23 

% HS dropouts 10.67 1.29 11.49 Txt msgs sent/day 27.18 12.88 18.10 
% middle 
schoolers bullied 17.59 0.81 19.46 Times lose 

temper/wk 2.60 0.56 2.20 

Hrs slept/night 6.69 7.84 7.32 Times 
swearing/day 8.69 5.88 11.26 

        


